예제 #1
0
    def save_check_images(self, extractor, xl, yl, zl_list, pm_list):

        from libs.ecfit import check_fit_simple

        fig_list = []
        from matplotlib.figure import Figure

        orders = extractor.orders_w_solutions
        for zl, (p, m)  in zip(zl_list, pm_list):
            fig = Figure()
            check_fit_simple(fig, xl[m], yl[m], zl[m], p, orders)
            fig_list.append(fig)

        igr_path = extractor.igr_path
        from libs.qa_helper import figlist_to_pngs
        sky_basename = extractor.tgt_basename
        sky_figs = igr_path.get_section_filename_base("QA_PATH",
                                                      "oh_distortion",
                                                      "oh_distortion_"+sky_basename)
        print fig_list
        figlist_to_pngs(sky_figs, fig_list)

        return fig_list
예제 #2
0
def process_distortion_sky_band(utdate, refdate, band, obsids, config):

    from libs.products import ProductDB, PipelineStorage

    igr_path = IGRINSPath(config, utdate)

    igr_storage = PipelineStorage(igr_path)

    sky_filenames = igr_path.get_filenames(band, obsids)

    sky_basename = os.path.splitext(os.path.basename(sky_filenames[0]))[0]


    master_obsid = obsids[0]


    flaton_db_name = igr_path.get_section_filename_base("PRIMARY_CALIB_PATH",
                                                        "flat_on.db",
                                                        )
    flaton_db = ProductDB(flaton_db_name)

    # thar_db_name = igr_path.get_section_filename_base("PRIMARY_CALIB_PATH",
    #                                                     "thar.db",
    #                                                     )
    # thar_db = ProductDB(thar_db_name)



    from libs.storage_descriptions import (COMBINED_IMAGE_DESC,
                                           ONED_SPEC_JSON_DESC)
    raw_spec_products = igr_storage.load([COMBINED_IMAGE_DESC,
                                          ONED_SPEC_JSON_DESC],
                                         sky_basename)

    # raw_spec_products = PipelineProducts.load(sky_path.get_secondary_path("raw_spec"))

    from libs.storage_descriptions import SKY_WVLSOL_JSON_DESC

    wvlsol_products = igr_storage.load([SKY_WVLSOL_JSON_DESC],
                                       sky_basename)[SKY_WVLSOL_JSON_DESC]

    orders_w_solutions = wvlsol_products["orders"]
    wvl_solutions = wvlsol_products["wvl_sol"]

    ap = load_aperture2(igr_storage, band, master_obsid,
                        flaton_db,
                        raw_spec_products[ONED_SPEC_JSON_DESC]["orders"],
                        orders_w_solutions)
    #orders_w_solutions = ap.orders


    if 1: # load reference data
        from libs.master_calib import load_sky_ref_data

        ref_utdate = config.get_value("REFDATE", utdate)

        sky_ref_data = load_sky_ref_data(ref_utdate, band)


        ohlines_db = sky_ref_data["ohlines_db"]
        ref_ohline_indices = sky_ref_data["ohline_indices"]


        orders_w_solutions = wvlsol_products["orders"]
        wvl_solutions = wvlsol_products["wvl_sol"]


    if 1:

        n_slice_one_direction = 2
        n_slice = n_slice_one_direction*2 + 1
        i_center = n_slice_one_direction
        slit_slice = np.linspace(0., 1., n_slice+1)

        slice_center = (slit_slice[i_center], slit_slice[i_center+1])
        slice_up = [(slit_slice[i_center+i], slit_slice[i_center+i+1]) \
                    for i in range(1, n_slice_one_direction+1)]
        slice_down = [(slit_slice[i_center-i-1], slit_slice[i_center-i]) \
                      for i in range(n_slice_one_direction)]

        d = raw_spec_products[COMBINED_IMAGE_DESC].data
        s_center = ap.extract_spectra_v2(d, slice_center[0], slice_center[1])

        s_up, s_down = [], []
        for s1, s2 in slice_up:
            s = ap.extract_spectra_v2(d, s1, s2)
            s_up.append(s)
        for s1, s2 in slice_down:
            s = ap.extract_spectra_v2(d, s1, s2)
            s_down.append(s)


    if 1:
        # now fit

        #ohline_indices = [ref_ohline_indices[o] for o in orders_w_solutions]


        if 0:
            def test_order(oi):
                ax=subplot(111)
                ax.plot(wvl_solutions[oi], s_center[oi])
                #ax.plot(wvl_solutions[oi], raw_spec_products["specs"][oi])
                o = orders[oi]
                line_indices = ref_ohline_indices[o]
                for li in line_indices:
                    um = np.take(ohlines_db.um, li)
                    intensity = np.take(ohlines_db.intensity, li)
                    ax.vlines(um, ymin=0, ymax=-intensity)




        from libs.reidentify_ohlines import fit_ohlines, fit_ohlines_pixel

        def get_reidentified_lines_OH(orders_w_solutions,
                                      wvl_solutions, s_center):
            ref_pixel_list, reidentified_lines = \
                            fit_ohlines(ohlines_db, ref_ohline_indices,
                                        orders_w_solutions,
                                        wvl_solutions, s_center)

            reidentified_lines_map = dict(zip(orders_w_solutions,
                                              reidentified_lines))
            return reidentified_lines_map, ref_pixel_list

        if band == "H":
            reidentified_lines_map, ref_pixel_list_oh = \
                       get_reidentified_lines_OH(orders_w_solutions,
                                                 wvl_solutions,
                                                 s_center)

            def refit_centroid(s_center,
                               ref_pixel_list=ref_pixel_list_oh):
                centroids = fit_ohlines_pixel(s_center,
                                              ref_pixel_list)
                return centroids

        else: # band K
            reidentified_lines_map, ref_pixel_list_oh = \
                       get_reidentified_lines_OH(orders_w_solutions,
                                                 wvl_solutions,
                                                 s_center)

            import libs.master_calib as master_calib
            fn = "hitran_bootstrap_K_%s.json" % ref_utdate
            bootstrap_name = master_calib.get_master_calib_abspath(fn)
            import json
            bootstrap = json.load(open(bootstrap_name))

            import libs.hitran as hitran
            r, ref_pixel_dict_hitrans = hitran.reidentify(wvl_solutions,
                                                          s_center,
                                                          bootstrap)
            # for i, s in r.items():
            #     ss = reidentified_lines_map[int(i)]
            #     ss0 = np.concatenate([ss[0], s["pixel"]])
            #     ss1 = np.concatenate([ss[1], s["wavelength"]])
            #     reidentified_lines_map[int(i)] = (ss0, ss1)

            #reidentified_lines_map, ref_pixel_list

            def refit_centroid(s_center,
                               ref_pixel_list=ref_pixel_list_oh,
                               ref_pixel_dict_hitrans=ref_pixel_dict_hitrans):
                centroids_oh = fit_ohlines_pixel(s_center,
                                                 ref_pixel_list)

                s_dict = dict(zip(orders_w_solutions, s_center))
                centroids_dict_hitrans = hitran.fit_hitrans_pixel(s_dict,
                                                                  ref_pixel_dict_hitrans)
                centroids = []
                for o, c_oh in zip(orders_w_solutions, centroids_oh):
                    if o in centroids_dict_hitrans:
                        c = np.concatenate([c_oh,
                                            centroids_dict_hitrans[o]["pixel"]])
                        centroids.append(c)
                    else:
                        centroids.append(c_oh)

                return centroids

        # reidentified_lines_map = get_reidentified_lines(orders_w_solutions,
        #                                                 wvl_solutions,
        #                                                 s_center)


    if 1:
        # TODO: we should not need this, instead recycle from preivious step.
        fitted_centroid_center = refit_centroid(s_center)
        # fitted_centroid_center = fit_ohlines_pixel(s_center,
        #                                            ref_pixel_list)

        d_shift_up = []
        for s in s_up:
            # TODO: ref_pixel_list_filtered need to be updated with recent fit.
            fitted_centroid = refit_centroid(s)
            # fitted_centroid = fit_ohlines_pixel(s,
            #                                     ref_pixel_list)
            d_shift = [b-a for a, b in zip(fitted_centroid_center,
                                           fitted_centroid)]
            d_shift_up.append(d_shift)

        d_shift_down = []
        for s in s_down:
            # TODO: ref_pixel_list_filtered need to be updated with recent fit.
            fitted_centroid = refit_centroid(s)
            # fitted_centroid = fit_ohlines_pixel(s,
            #                                     ref_pixel_list)
            #fitted_centroid_center,
            d_shift = [b-a for a, b in zip(fitted_centroid_center,
                                           fitted_centroid)]
            d_shift_down.append(d_shift)


    if 1:
        # now fit
        orders = orders_w_solutions

        x_domain = [0, 2048]
        y_domain = [orders[0]-2, orders[-1]+2]


        xl = np.concatenate(fitted_centroid_center)

        yl_ = [o + np.zeros_like(x_) for o, x_ in zip(orders,
                                                      fitted_centroid_center)]
        yl = np.concatenate(yl_)

        from libs.ecfit import fit_2dspec, check_fit_simple

        zl_list = [np.concatenate(d_) for d_ \
                   in d_shift_down[::-1] + d_shift_up]

        pm_list = []
        for zl in zl_list:
            p, m = fit_2dspec(xl, yl, zl,
                              x_degree=1, y_degree=1,
                              x_domain=x_domain, y_domain=y_domain)
            pm_list.append((p,m))

        zz_std_list = []
        for zl, (p, m)  in zip(zl_list, pm_list):
            z_m = p(xl[m], yl[m])
            zz = z_m - zl[m]
            zz_std_list.append(zz.std())

        fig_list = []
        from matplotlib.figure import Figure
        for zl, (p, m)  in zip(zl_list, pm_list):
            fig = Figure()
            check_fit_simple(fig, xl[m], yl[m], zl[m], p, orders)
            fig_list.append(fig)


    if 1:
        xi = np.linspace(0, 2048, 128+1)
        from astropy.modeling import fitting
        from astropy.modeling.polynomial import Chebyshev2D
        x_domain = [0, 2048]
        y_domain = [0., 1.]

        p2_list = []
        for o in orders:
            oi = np.zeros_like(xi) + o
            shift_list = []
            for p,m in pm_list[:n_slice_one_direction]:
                shift_list.append(p(xi, oi))

            shift_list.append(np.zeros_like(xi))

            for p,m in pm_list[n_slice_one_direction:]:
                shift_list.append(p(xi, oi))


            p_init = Chebyshev2D(x_degree=1, y_degree=2,
                                 x_domain=x_domain, y_domain=y_domain)
            f = fitting.LinearLSQFitter()

            yi = 0.5*(slit_slice[:-1] + slit_slice[1:])
            xl, yl = np.meshgrid(xi, yi)
            zl = np.array(shift_list)
            p = f(p_init, xl, yl, zl)

            p2_list.append(p)

    if 1:
        p2_dict = dict(zip(orders, p2_list))

        order_map = ap.make_order_map()
        slitpos_map = ap.make_slitpos_map()

        slitoffset_map = np.empty_like(slitpos_map)
        slitoffset_map.fill(np.nan)
        for o in ap.orders:
            xi = np.arange(0, 2048)
            xl, yl = np.meshgrid(xi, xi)
            msk = order_map == o
            slitoffset_map[msk] = p2_dict[o](xl[msk], slitpos_map[msk])

        # import astropy.io.fits as pyfits
        # fn = sky_path.get_secondary_path("slitoffset_map.fits")
        # pyfits.PrimaryHDU(data=slitoffset_map).writeto(fn, clobber=True)

        from libs.storage_descriptions import SLITOFFSET_FITS_DESC
        from libs.products import PipelineImage, PipelineProducts
        distortion_products = PipelineProducts("Distortion map")
        distortion_products.add(SLITOFFSET_FITS_DESC,
                                PipelineImage([],
                                              slitoffset_map))

        igr_storage.store(distortion_products,
                          mastername=sky_filenames[0],
                          masterhdu=None)


        from libs.qa_helper import figlist_to_pngs
        sky_figs = igr_path.get_section_filename_base("QA_PATH",
                                                      "oh_distortion",
                                                      "oh_distortion_"+sky_basename)
        print fig_list
        figlist_to_pngs(sky_figs, fig_list)


    if 0:
        # test
        x = np.arange(2048, dtype="d")
        oi = 10
        o = orders[oi]

        yi = 0.5*(slit_slice[:-1] + slit_slice[1:])

        ax1 = subplot(211)
        s1 = s_up[-1][oi]
        s2 = s_down[-1][oi]

        ax1.plot(x, s1)
        ax1.plot(x, s2)

        ax2 = subplot(212, sharex=ax1, sharey=ax1)
        dx1 = p2_dict[o](x, yi[-1]+np.zeros_like(x))
        ax2.plot(x-dx1, s1)

        dx2 = p2_dict[o](x, yi[0]+np.zeros_like(x))
        ax2.plot(x-dx2, s2)
예제 #3
0
def process_distortion_sky_band(utdate, refdate, band, obsids, config):

    from libs.products import ProductDB, PipelineStorage

    igr_path = IGRINSPath(config, utdate)

    igr_storage = PipelineStorage(igr_path)

    sky_filenames = igr_path.get_filenames(band, obsids)

    sky_basename = os.path.splitext(os.path.basename(sky_filenames[0]))[0]

    master_obsid = obsids[0]

    flaton_db_name = igr_path.get_section_filename_base(
        "PRIMARY_CALIB_PATH",
        "flat_on.db",
    )
    flaton_db = ProductDB(flaton_db_name)

    # thar_db_name = igr_path.get_section_filename_base("PRIMARY_CALIB_PATH",
    #                                                     "thar.db",
    #                                                     )
    # thar_db = ProductDB(thar_db_name)

    from libs.storage_descriptions import (COMBINED_IMAGE_DESC,
                                           ONED_SPEC_JSON_DESC)
    raw_spec_products = igr_storage.load(
        [COMBINED_IMAGE_DESC, ONED_SPEC_JSON_DESC], sky_basename)

    # raw_spec_products = PipelineProducts.load(sky_path.get_secondary_path("raw_spec"))

    from libs.storage_descriptions import SKY_WVLSOL_JSON_DESC

    wvlsol_products = igr_storage.load([SKY_WVLSOL_JSON_DESC],
                                       sky_basename)[SKY_WVLSOL_JSON_DESC]

    orders_w_solutions = wvlsol_products["orders"]
    wvl_solutions = wvlsol_products["wvl_sol"]

    ap = load_aperture2(igr_storage, band, master_obsid, flaton_db,
                        raw_spec_products[ONED_SPEC_JSON_DESC]["orders"],
                        orders_w_solutions)
    #orders_w_solutions = ap.orders

    if 1:  # load reference data
        from libs.master_calib import load_sky_ref_data

        ref_utdate = config.get_value("REFDATE", utdate)

        sky_ref_data = load_sky_ref_data(ref_utdate, band)

        ohlines_db = sky_ref_data["ohlines_db"]
        ref_ohline_indices = sky_ref_data["ohline_indices"]

        orders_w_solutions = wvlsol_products["orders"]
        wvl_solutions = wvlsol_products["wvl_sol"]

    if 1:

        n_slice_one_direction = 2
        n_slice = n_slice_one_direction * 2 + 1
        i_center = n_slice_one_direction
        slit_slice = np.linspace(0., 1., n_slice + 1)

        slice_center = (slit_slice[i_center], slit_slice[i_center + 1])
        slice_up = [(slit_slice[i_center+i], slit_slice[i_center+i+1]) \
                    for i in range(1, n_slice_one_direction+1)]
        slice_down = [(slit_slice[i_center-i-1], slit_slice[i_center-i]) \
                      for i in range(n_slice_one_direction)]

        d = raw_spec_products[COMBINED_IMAGE_DESC].data
        s_center = ap.extract_spectra_v2(d, slice_center[0], slice_center[1])

        s_up, s_down = [], []
        for s1, s2 in slice_up:
            s = ap.extract_spectra_v2(d, s1, s2)
            s_up.append(s)
        for s1, s2 in slice_down:
            s = ap.extract_spectra_v2(d, s1, s2)
            s_down.append(s)

    if 1:
        # now fit

        #ohline_indices = [ref_ohline_indices[o] for o in orders_w_solutions]

        if 0:

            def test_order(oi):
                ax = subplot(111)
                ax.plot(wvl_solutions[oi], s_center[oi])
                #ax.plot(wvl_solutions[oi], raw_spec_products["specs"][oi])
                o = orders[oi]
                line_indices = ref_ohline_indices[o]
                for li in line_indices:
                    um = np.take(ohlines_db.um, li)
                    intensity = np.take(ohlines_db.intensity, li)
                    ax.vlines(um, ymin=0, ymax=-intensity)

        from libs.reidentify_ohlines import fit_ohlines, fit_ohlines_pixel

        def get_reidentified_lines_OH(orders_w_solutions, wvl_solutions,
                                      s_center):
            ref_pixel_list, reidentified_lines = \
                            fit_ohlines(ohlines_db, ref_ohline_indices,
                                        orders_w_solutions,
                                        wvl_solutions, s_center)

            reidentified_lines_map = dict(
                zip(orders_w_solutions, reidentified_lines))
            return reidentified_lines_map, ref_pixel_list

        if band == "H":
            reidentified_lines_map, ref_pixel_list_oh = \
                       get_reidentified_lines_OH(orders_w_solutions,
                                                 wvl_solutions,
                                                 s_center)

            def refit_centroid(s_center, ref_pixel_list=ref_pixel_list_oh):
                centroids = fit_ohlines_pixel(s_center, ref_pixel_list)
                return centroids

        else:  # band K
            reidentified_lines_map, ref_pixel_list_oh = \
                       get_reidentified_lines_OH(orders_w_solutions,
                                                 wvl_solutions,
                                                 s_center)

            import libs.master_calib as master_calib
            fn = "hitran_bootstrap_K_%s.json" % ref_utdate
            bootstrap_name = master_calib.get_master_calib_abspath(fn)
            import json
            bootstrap = json.load(open(bootstrap_name))

            import libs.hitran as hitran
            r, ref_pixel_dict_hitrans = hitran.reidentify(
                wvl_solutions, s_center, bootstrap)

            # for i, s in r.items():
            #     ss = reidentified_lines_map[int(i)]
            #     ss0 = np.concatenate([ss[0], s["pixel"]])
            #     ss1 = np.concatenate([ss[1], s["wavelength"]])
            #     reidentified_lines_map[int(i)] = (ss0, ss1)

            #reidentified_lines_map, ref_pixel_list

            def refit_centroid(s_center,
                               ref_pixel_list=ref_pixel_list_oh,
                               ref_pixel_dict_hitrans=ref_pixel_dict_hitrans):
                centroids_oh = fit_ohlines_pixel(s_center, ref_pixel_list)

                s_dict = dict(zip(orders_w_solutions, s_center))
                centroids_dict_hitrans = hitran.fit_hitrans_pixel(
                    s_dict, ref_pixel_dict_hitrans)
                centroids = []
                for o, c_oh in zip(orders_w_solutions, centroids_oh):
                    if o in centroids_dict_hitrans:
                        c = np.concatenate(
                            [c_oh, centroids_dict_hitrans[o]["pixel"]])
                        centroids.append(c)
                    else:
                        centroids.append(c_oh)

                return centroids

        # reidentified_lines_map = get_reidentified_lines(orders_w_solutions,
        #                                                 wvl_solutions,
        #                                                 s_center)

    if 1:
        # TODO: we should not need this, instead recycle from preivious step.
        fitted_centroid_center = refit_centroid(s_center)
        # fitted_centroid_center = fit_ohlines_pixel(s_center,
        #                                            ref_pixel_list)

        d_shift_up = []
        for s in s_up:
            # TODO: ref_pixel_list_filtered need to be updated with recent fit.
            fitted_centroid = refit_centroid(s)
            # fitted_centroid = fit_ohlines_pixel(s,
            #                                     ref_pixel_list)
            d_shift = [
                b - a for a, b in zip(fitted_centroid_center, fitted_centroid)
            ]
            d_shift_up.append(d_shift)

        d_shift_down = []
        for s in s_down:
            # TODO: ref_pixel_list_filtered need to be updated with recent fit.
            fitted_centroid = refit_centroid(s)
            # fitted_centroid = fit_ohlines_pixel(s,
            #                                     ref_pixel_list)
            #fitted_centroid_center,
            d_shift = [
                b - a for a, b in zip(fitted_centroid_center, fitted_centroid)
            ]
            d_shift_down.append(d_shift)

    if 1:
        # now fit
        orders = orders_w_solutions

        x_domain = [0, 2048]
        y_domain = [orders[0] - 2, orders[-1] + 2]

        xl = np.concatenate(fitted_centroid_center)

        yl_ = [
            o + np.zeros_like(x_)
            for o, x_ in zip(orders, fitted_centroid_center)
        ]
        yl = np.concatenate(yl_)

        from libs.ecfit import fit_2dspec, check_fit_simple

        zl_list = [np.concatenate(d_) for d_ \
                   in d_shift_down[::-1] + d_shift_up]

        pm_list = []
        for zl in zl_list:
            p, m = fit_2dspec(xl,
                              yl,
                              zl,
                              x_degree=1,
                              y_degree=1,
                              x_domain=x_domain,
                              y_domain=y_domain)
            pm_list.append((p, m))

        zz_std_list = []
        for zl, (p, m) in zip(zl_list, pm_list):
            z_m = p(xl[m], yl[m])
            zz = z_m - zl[m]
            zz_std_list.append(zz.std())

        fig_list = []
        from matplotlib.figure import Figure
        for zl, (p, m) in zip(zl_list, pm_list):
            fig = Figure()
            check_fit_simple(fig, xl[m], yl[m], zl[m], p, orders)
            fig_list.append(fig)

    if 1:
        xi = np.linspace(0, 2048, 128 + 1)
        from astropy.modeling import fitting
        from astropy.modeling.polynomial import Chebyshev2D
        x_domain = [0, 2048]
        y_domain = [0., 1.]

        p2_list = []
        for o in orders:
            oi = np.zeros_like(xi) + o
            shift_list = []
            for p, m in pm_list[:n_slice_one_direction]:
                shift_list.append(p(xi, oi))

            shift_list.append(np.zeros_like(xi))

            for p, m in pm_list[n_slice_one_direction:]:
                shift_list.append(p(xi, oi))

            p_init = Chebyshev2D(x_degree=1,
                                 y_degree=2,
                                 x_domain=x_domain,
                                 y_domain=y_domain)
            f = fitting.LinearLSQFitter()

            yi = 0.5 * (slit_slice[:-1] + slit_slice[1:])
            xl, yl = np.meshgrid(xi, yi)
            zl = np.array(shift_list)
            p = f(p_init, xl, yl, zl)

            p2_list.append(p)

    if 1:
        p2_dict = dict(zip(orders, p2_list))

        # save order_map, etc

        order_map = ap.make_order_map()
        slitpos_map = ap.make_slitpos_map()
        order_map2 = ap.make_order_map(mask_top_bottom=True)

        slitoffset_map = np.empty_like(slitpos_map)
        slitoffset_map.fill(np.nan)

        wavelength_map = np.empty_like(slitpos_map)
        wavelength_map.fill(np.nan)

        from scipy.interpolate import interp1d
        for o, wvl in zip(ap.orders, wvl_solutions):
            xi = np.arange(0, 2048)
            xl, yl = np.meshgrid(xi, xi)
            msk = order_map == o

            xl_msk = xl[msk]
            slitoffset_map_msk = p2_dict[o](xl_msk, slitpos_map[msk])
            slitoffset_map[msk] = slitoffset_map_msk

            wvl_interp1d = interp1d(xi, wvl, bounds_error=False)
            wavelength_map[msk] = wvl_interp1d(xl_msk - slitoffset_map_msk)

        from libs.storage_descriptions import (ORDERMAP_FITS_DESC,
                                               SLITPOSMAP_FITS_DESC,
                                               SLITOFFSET_FITS_DESC,
                                               WAVELENGTHMAP_FITS_DESC,
                                               ORDERMAP_MASKED_FITS_DESC)
        from libs.products import PipelineImage, PipelineProducts
        products = PipelineProducts("Distortion map")

        for desc, im in [(ORDERMAP_FITS_DESC, order_map),
                         (SLITPOSMAP_FITS_DESC, slitpos_map),
                         (SLITOFFSET_FITS_DESC, slitoffset_map),
                         (WAVELENGTHMAP_FITS_DESC, wavelength_map),
                         (ORDERMAP_MASKED_FITS_DESC, order_map2)]:
            products.add(desc, PipelineImage([], im))

        igr_storage.store(products,
                          mastername=sky_filenames[0],
                          masterhdu=None)

        from libs.qa_helper import figlist_to_pngs
        sky_figs = igr_path.get_section_filename_base(
            "QA_PATH", "oh_distortion", "oh_distortion_" + sky_basename)
        print fig_list
        figlist_to_pngs(sky_figs, fig_list)

    if 0:
        # test
        x = np.arange(2048, dtype="d")
        oi = 10
        o = orders[oi]

        yi = 0.5 * (slit_slice[:-1] + slit_slice[1:])

        ax1 = subplot(211)
        s1 = s_up[-1][oi]
        s2 = s_down[-1][oi]

        ax1.plot(x, s1)
        ax1.plot(x, s2)

        ax2 = subplot(212, sharex=ax1, sharey=ax1)
        dx1 = p2_dict[o](x, yi[-1] + np.zeros_like(x))
        ax2.plot(x - dx1, s1)

        dx2 = p2_dict[o](x, yi[0] + np.zeros_like(x))
        ax2.plot(x - dx2, s2)