def main():
    _tuples = [('Metastasis_Airyscan_210401_sgAXL', 2, 'cells_1_2', True),
               ('Metastasis_Airyscan_210401_sgAXL', 3, 'cells_1_3', True),
               ('Metastasis_Airyscan_210401_sgAXL', 5, 'cells_0_1', True),
               ('Metastasis_Airyscan_210401_sgAXL', 9, 'cells_0_5', True),
               ('Metastasis_Airyscan_210401_sgAXL', 11, 'cells_1_2', True),
               ('Metastasis_Airyscan_210401_sgAXL', 14, 'cells_0_1', True),
               ('Metastasis_Airyscan_210401_sgAXL', 15, 'cells_1_2', True)]

    for _tuple in _tuples:
        _e, _s, _g, _b = _tuple
        _p = load.group_properties(_e, _s, _g)
        _p['band'] = _b
        _group_structured_path = paths.structured(_e, _s, _g)
        _properties_json_path = os.path.join(_group_structured_path,
                                             'properties.json')
        save_lib.to_json(_p, _properties_json_path)
        print(_tuple)

        _g_fake = 'fake_' + _g.split('cells_')[1]
        _group_structured_path = paths.structured(_e, _s, _g_fake)
        _properties_json_path = os.path.join(_group_structured_path,
                                             'properties.json')
        if os.path.isfile(_properties_json_path):
            print(_g_fake)
            _p = load.group_properties(_e, _s, _g_fake)
            _p['band'] = _b
            save_lib.to_json(_p, _properties_json_path)
예제 #2
0
def process_group(_experiment, _series_id, _group, _overwrite=False):
    _group_properties = load.group_properties(_experiment, _series_id, _group)
    if not _overwrite and _group_properties['band'] is not None:
        return

    if 'static' in _group:
        return
    elif 'fake' in _group:
        _group_real = 'cells_' + _group.split('fake_')[1]
    else:
        _group_real = _group

    _group_real_properties = load.group_properties(_experiment, _series_id,
                                                   _group_real)
    _time_frames_amount = len(_group_real_properties['time_points'])

    _fiber_density = []
    for _time_frame in [
            0, int(round(_time_frames_amount / 2)), _time_frames_amount - 1
    ]:
        _left_cell_coordinates = _group_real_properties['time_points'][
            _time_frame]['left_cell']['coordinates']
        _right_cell_coordinates = _group_real_properties['time_points'][
            _time_frame]['right_cell']['coordinates']
        _cell_diameter_x = \
            AVERAGE_CELL_DIAMETER_IN_MICRONS / _group_real_properties['time_points'][_time_frame]['resolutions']['x']
        _cell_diameter_y = \
            AVERAGE_CELL_DIAMETER_IN_MICRONS / _group_real_properties['time_points'][_time_frame]['resolutions']['y']
        _cell_diameter_z = \
            AVERAGE_CELL_DIAMETER_IN_MICRONS / _group_real_properties['time_points'][_time_frame]['resolutions']['z']
        _x1 = (_left_cell_coordinates['x'] +
               _right_cell_coordinates['x']) / 2 - _cell_diameter_x / 2
        _x2 = _x1 + _cell_diameter_x
        _y1 = (_left_cell_coordinates['y'] +
               _right_cell_coordinates['y']) / 2 - _cell_diameter_y / 2
        _y2 = _y1 + _cell_diameter_y
        _z1 = (_left_cell_coordinates['z'] +
               _right_cell_coordinates['z']) / 2 - _cell_diameter_z / 2
        _z2 = _z1 + _cell_diameter_z
        _window = [_x1, _y1, _z1, _x2, _y2, _z2]
        _fiber_density = compute.window_fiber_density(
            _experiment=_experiment,
            _series_id=_series_id,
            _group=_group_real,
            _time_frame=_time_frame,
            _window=[int(round(_value)) for _value in _window])[:2]
        _fiber_density.append(_fiber_density)

    if _fiber_density[0] < _fiber_density[1] < _fiber_density[2]:
        _band = True
    else:
        _band = False

    print(_experiment, _series_id, _group, _band, sep='\t')

    _group_properties['band'] = _band
    _group_structured_path = paths.structured(_experiment, _series_id, _group)
    _properties_json_path = os.path.join(_group_structured_path,
                                         'properties.json')
    save_lib.to_json(_group_properties, _properties_json_path)
예제 #3
0
def main():
    _experiment = 'LiveDead_201220'
    _band = False

    _tuples = load.experiment_groups_as_tuples(_experiment)
    print('Total tuples:', len(_tuples))

    for _tuple in _tuples:
        print(_tuple)
        _experiment, _series_id, _group = _tuple
        _properties = load.group_properties(_experiment, _series_id, _group)
        _properties['band'] = _band

        _group_structured_path = paths.structured(_experiment, _series_id,
                                                  _group)
        _properties_json_path = os.path.join(_group_structured_path,
                                             'properties.json')
        save_lib.to_json(_properties, _properties_json_path)
def process_group(_experiment, _series_id, _cells_coordinates, _cell_1_id, _cell_2_id, _series_image_by_time_frames,
                  _resolutions, _real_cells=True, _fake_cell_1_id=None, _fake_cell_2_id=None,
                  _x_change=0, _y_change=0, _z_change=0, _overwrite=False):
    _time_frames_data = []
    _left_cell_id = None
    _right_cell_id = None
    _time_frames_amount = min(
        len([_value for _value in _cells_coordinates[_cell_1_id] if _value is not None]),
        len([_value for _value in _cells_coordinates[_cell_2_id] if _value is not None])
    )

    # smooth coordinates
    _cells_coordinates_cell_1_smoothed = compute.smooth_coordinates_in_time(
        [_value for _value in _cells_coordinates[_cell_1_id] if _value is not None], _n=SMOOTH_AMOUNT
    )
    _cells_coordinates_cell_2_smoothed = compute.smooth_coordinates_in_time(
        [_value for _value in _cells_coordinates[_cell_2_id] if _value is not None], _n=SMOOTH_AMOUNT
    )

    if _real_cells:
        _group = 'cells_' + str(_cell_1_id) + '_' + str(_cell_2_id)
    elif _fake_cell_1_id is None:
        _group = 'fake_' + str(_cell_1_id) + '_' + str(_cell_2_id)
    else:
        _group = 'static_' + str(_fake_cell_1_id) + '_' + str(_fake_cell_2_id)

    # check if needed (missing time-point / properties file)
    if not _overwrite:
        _missing = False
        for _time_frame in range(_time_frames_amount):
            _time_frame_pickle_path = paths.structured(_experiment, _series_id, _group, _time_frame)
            if not os.path.isfile(_time_frame_pickle_path):
                _missing = True
                break
        _group_structured_path = paths.structured(_experiment, _series_id, _group)
        _properties_json_path = os.path.join(_group_structured_path, 'properties.json')
        if not os.path.isfile(_properties_json_path):
            _missing = True
        if not _missing:
            return

    # running for each time point
    for _time_frame in range(_time_frames_amount):
        _time_frame_image = _series_image_by_time_frames[_time_frame]
        _cell_1_coordinates = [_value for _value in _cells_coordinates_cell_1_smoothed[_time_frame]]
        _cell_2_coordinates = [_value for _value in _cells_coordinates_cell_2_smoothed[_time_frame]]

        # update coordinates if needed
        if any([_x_change != 0, _y_change != 0, _z_change != 0]):
            _cell_1_coordinates = [
                _cell_1_coordinates[0] + _x_change,
                _cell_1_coordinates[1] + _y_change,
                _cell_1_coordinates[2] + _z_change
            ]
            _cell_2_coordinates = [
                _cell_2_coordinates[0] + _x_change,
                _cell_2_coordinates[1] + _y_change,
                _cell_2_coordinates[2] + _z_change
            ]

        # choose left and right cells
        if _time_frame == 0:
            if _cell_1_coordinates[0] <= _cell_2_coordinates[0]:
                _left_cell_id, _right_cell_id = _cell_1_id, _cell_2_id
            else:
                _right_cell_id, _left_cell_id = _cell_1_id, _cell_2_id

        print(_experiment, 'Series ' + str(_series_id), 'Cell 1 #:', _cell_1_id, 'Cell 2 #:', _cell_2_id, 'Time point:',
              _time_frame, sep='\t')

        # set coordinates
        if _left_cell_id == _cell_1_id:
            _left_cell_coordinates, _right_cell_coordinates = _cell_1_coordinates, _cell_2_coordinates
        else:
            _right_cell_coordinates, _left_cell_coordinates = _cell_1_coordinates, _cell_2_coordinates

        # compute padding
        _helper_coordinates = (_left_cell_coordinates[0] + 1, _left_cell_coordinates[1])
        _angle = compute.angle_between_three_points(
            _right_cell_coordinates, _left_cell_coordinates, _helper_coordinates
        )
        _padding_x, _padding_y = compute.axes_padding(_2d_image_shape=_time_frame_image[0].shape, _angle=_angle)
        _left_cell_coordinates[0] += _padding_x
        _left_cell_coordinates[1] += _padding_y
        _right_cell_coordinates[0] += _padding_x
        _right_cell_coordinates[1] += _padding_y

        # rotate image and change axes
        _time_frame_image_rotated = np.array([rotate(_z, _angle) for _z in _time_frame_image])
        _time_frame_image_swapped = np.swapaxes(_time_frame_image_rotated, 0, 1)

        if SHOW_PLOTS:
            plt.imshow(_time_frame_image_rotated[int(round(_left_cell_coordinates[2]))])
            plt.show()
            plt.imshow(_time_frame_image_rotated[int(round(_right_cell_coordinates[2]))])
            plt.show()

        # update coordinates
        _image_center = compute.image_center_coordinates(_image_shape=reversed(_time_frame_image_rotated[0].shape))
        _left_cell_coordinates = compute.rotate_point_around_another_point(
            _point=_left_cell_coordinates,
            _angle_in_radians=math.radians(_angle),
            _around_point=_image_center
        )
        _right_cell_coordinates = compute.rotate_point_around_another_point(
            _point=_right_cell_coordinates,
            _angle_in_radians=math.radians(_angle),
            _around_point=_image_center
        )
        _fixed_y = (_left_cell_coordinates[1] + _right_cell_coordinates[1]) / 2
        # y is now z
        _left_cell_coordinates[1] = _left_cell_coordinates[2]
        _right_cell_coordinates[1] = _right_cell_coordinates[2]
        # z is now y
        _left_cell_coordinates[2] = _fixed_y
        _right_cell_coordinates[2] = _fixed_y

        if SHOW_PLOTS:
            plt.imshow(_time_frame_image_swapped[int(round(_left_cell_coordinates[2]))])
            plt.show()

        # swap resolutions
        _new_resolutions = {
            'x': _resolutions['x'],
            'y': _resolutions['z'],
            'z': _resolutions['y']
        }

        # second rotate, compute padding
        _helper_coordinates = (_left_cell_coordinates[0] + 1, _left_cell_coordinates[1])
        _angle = compute.angle_between_three_points(
            _right_cell_coordinates, _left_cell_coordinates, _helper_coordinates
        )
        _padding_x, _padding_y = compute.axes_padding(_2d_image_shape=_time_frame_image_swapped[0].shape, _angle=_angle)
        _left_cell_coordinates[0] += _padding_x
        _left_cell_coordinates[1] += _padding_y
        _right_cell_coordinates[0] += _padding_x
        _right_cell_coordinates[1] += _padding_y

        # rotate image
        _time_frame_image_swapped_rotated = np.array([rotate(_z, _angle) for _z in _time_frame_image_swapped])

        # convert to 8 bit color depth
        if CONVERT_TO_COLOR_DEPTH_8_BIT:
            _time_frame_image_swapped_rotated = \
                np.rint(_time_frame_image_swapped_rotated / (math.pow(2, 16) - 1) * (math.pow(2, 8) - 1)).astype(np.uint8)

        # update coordinates
        _image_center = compute.image_center_coordinates(
            _image_shape=reversed(_time_frame_image_swapped_rotated[0].shape))
        _left_cell_coordinates = compute.rotate_point_around_another_point(
            _point=_left_cell_coordinates,
            _angle_in_radians=math.radians(_angle),
            _around_point=_image_center
        )
        _right_cell_coordinates = compute.rotate_point_around_another_point(
            _point=_right_cell_coordinates,
            _angle_in_radians=math.radians(_angle),
            _around_point=_image_center
        )
        _fixed_y = (_left_cell_coordinates[1] + _right_cell_coordinates[1]) / 2
        _left_cell_coordinates[1] = _fixed_y
        _right_cell_coordinates[1] = _fixed_y

        if SHOW_PLOTS:
            if _time_frame == 0 or _time_frame == 50 or _time_frame == 150:
                plt.imshow(_time_frame_image_swapped_rotated[int(round(_left_cell_coordinates[2]))])
                plt.show()

        # update resolutions
        _angle = abs(_angle)
        _new_resolution_x = (_angle / 90) * _new_resolutions['y'] + ((90 - _angle) / 90) * _new_resolutions['x']
        _new_resolution_y = (_angle / 90) * _new_resolutions['x'] + ((90 - _angle) / 90) * _new_resolutions['y']
        _new_resolutions['x'] = _new_resolution_x
        _new_resolutions['y'] = _new_resolution_y

        _image_z, _image_y, _image_x = _time_frame_image_swapped_rotated.shape
        if not 0 <= _left_cell_coordinates[0] < _image_x or not \
                0 <= _left_cell_coordinates[1] < _image_y or not \
                0 <= _left_cell_coordinates[2] < _image_z:
            break
        if not 0 <= _right_cell_coordinates[0] < _image_x or not \
                0 <= _right_cell_coordinates[1] < _image_y or not \
                0 <= _right_cell_coordinates[2] < _image_z:
            break

        # add to array
        _time_frames_data.append({
            'left_cell': {
                'coordinates': {
                    'x': _left_cell_coordinates[0],
                    'y': _left_cell_coordinates[1],
                    'z': _left_cell_coordinates[2]
                }
            },
            'right_cell': {
                'coordinates': {
                    'x': _right_cell_coordinates[0],
                    'y': _right_cell_coordinates[1],
                    'z': _right_cell_coordinates[2]
                }
            },
            'resolutions': _new_resolutions
        })

        # save to pickle
        _time_frame_pickle_path = paths.structured(_experiment, _series_id, _group, _time_frame)
        save_lib.to_pickle(_time_frame_image_swapped_rotated, _time_frame_pickle_path)

    # save properties
    if _real_cells:
        _band = None
        _fake = False
        _static = False
    elif _fake_cell_1_id is None:
        _based_on_properties = load.group_properties(_experiment, _series_id, 'cells_' + _group.split('fake_')[1])
        _band = _based_on_properties['band']
        _fake = True
        _static = False
    else:
        _band = False
        _fake = True
        _static = True
    _properties_data = {
        'experiment': _experiment,
        'series_id': _series_id,
        'cells_ids': {
            'left_cell': _left_cell_id,
            'right_cell': _right_cell_id
        },
        'time_points': _time_frames_data,
        'band': _band,
        'fake': _fake,
        'static': _static
    }
    _group_structured_path = paths.structured(_experiment, _series_id, _group)
    _properties_json_path = os.path.join(_group_structured_path, 'properties.json')
    save_lib.to_json(_properties_data, _properties_json_path)
def process_group(_arguments):
    _time_frames_data = []
    _time_frames_amount = \
        len([_value for _value in _arguments['cell_coordinates'][_arguments['cell_id']] if _value is not None])

    # smooth coordinates
    _cells_coordinates_cell_smoothed = compute.smooth_coordinates_in_time(
        [
            _value
            for _value in _arguments['cell_coordinates'][_arguments['cell_id']]
            if _value is not None
        ],
        _n=SMOOTH_AMOUNT)

    if _arguments['cell_type'] == 'real':
        _group = 'cell_' + str(_arguments['cell_id']) + '_' + str(_arguments['degrees_xy']) + '_' + \
                 str(_arguments['degrees_z'])
    elif _arguments['cell_type'] == 'fake':
        _group = 'fake_' + str(_arguments['cell_id']) + '_' + str(_arguments['degrees_xy']) + '_' + \
                 str(_arguments['degrees_z'])
    elif _arguments['cell_type'] == 'static':
        _group = 'static_' + str(_arguments['cell_id']) + '_' + str(_arguments['degrees_xy']) + '_' + \
                 str(_arguments['degrees_z'])
    else:
        raise Exception('No such cell type')

    # check if needed (missing time-point / properties file)
    if not _arguments['overwrite']:
        _missing = False
        for _time_frame in range(_time_frames_amount):
            _time_frame_pickle_path = \
                paths.structured(_arguments['experiment'], _arguments['series_id'], _group, _time_frame)
            if not os.path.isfile(_time_frame_pickle_path):
                _missing = True
                break
        _group_structured_path = paths.structured(_arguments['experiment'],
                                                  _arguments['series_id'],
                                                  _group)
        _properties_json_path = os.path.join(_group_structured_path,
                                             'properties.json')
        if not os.path.isfile(_properties_json_path):
            _missing = True
        if not _missing:
            return

    # load image if needed
    if 'series_image_by_time_frames' not in _arguments:
        _series_image_path = \
            paths.serieses(_arguments['experiment'], _arguments['series_id'])
        _series_image = tifffile.imread(_series_image_path)
        _arguments['series_image_by_time_frames'] = [
            np.array([
                _z[IMAGE_FIBER_CHANNEL_INDEX]
                for _z in _series_image[_time_frame]
            ]) for _time_frame in range(_series_image.shape[0])
        ]

    # running for each time point
    for _time_frame in range(_time_frames_amount):
        _time_frame_image = _arguments['series_image_by_time_frames'][
            _time_frame]
        _cell_coordinates = [
            _value for _value in _cells_coordinates_cell_smoothed[_time_frame]
        ]

        # update coordinates if needed
        if 'x_change' in _arguments:
            _cell_coordinates[0] += _arguments['x_change']
        if 'y_change' in _arguments:
            _cell_coordinates[1] += _arguments['y_change']
        if 'z_change' in _arguments:
            _cell_coordinates[2] += _arguments['z_change']

        # compute padding xy
        _padding_x, _padding_y = \
            compute.axes_padding(_2d_image_shape=_time_frame_image[0].shape, _angle=_arguments['degrees_xy'])
        _cell_coordinates[0] += _padding_x
        _cell_coordinates[1] += _padding_y

        # rotate image and change axes
        _time_frame_image_rotated = np.array(
            [rotate(_z, _arguments['degrees_xy']) for _z in _time_frame_image])
        _time_frame_image_swapped = np.swapaxes(_time_frame_image_rotated, 0,
                                                1)

        if SHOW_PLOTS:
            plt.imshow(_time_frame_image_rotated[int(
                round(_cell_coordinates[2]))])
            plt.show()

        # update coordinates
        _image_center = compute.image_center_coordinates(
            _image_shape=reversed(_time_frame_image_rotated[0].shape))
        _cell_coordinates = compute.rotate_point_around_another_point(
            _point=_cell_coordinates,
            _angle_in_radians=math.radians(_arguments['degrees_xy']),
            _around_point=_image_center)
        # y is now z, z is now y
        _cell_coordinates[1], _cell_coordinates[2] = _cell_coordinates[
            2], _cell_coordinates[1]

        if SHOW_PLOTS:
            plt.imshow(_time_frame_image_swapped[int(
                round(_cell_coordinates[2]))])
            plt.show()

        # swap resolutions
        _new_resolutions = {
            'x': _arguments['resolutions']['x'],
            'y': _arguments['resolutions']['z'],
            'z': _arguments['resolutions']['y']
        }

        # second rotate, compute padding z
        _padding_x, _padding_y = \
            compute.axes_padding(_2d_image_shape=_time_frame_image_swapped[0].shape, _angle=_arguments['degrees_z'])
        _cell_coordinates[0] += _padding_x
        _cell_coordinates[1] += _padding_y

        # rotate image
        _time_frame_image_swapped_rotated = \
            np.array([rotate(_z, _arguments['degrees_z']) for _z in _time_frame_image_swapped])

        # update coordinates
        _image_center = compute.image_center_coordinates(
            _image_shape=reversed(_time_frame_image_swapped_rotated[0].shape))
        _cell_coordinates = compute.rotate_point_around_another_point(
            _point=_cell_coordinates,
            _angle_in_radians=math.radians(_arguments['degrees_z']),
            _around_point=_image_center)

        if SHOW_PLOTS:
            if _time_frame == 0 or _time_frame == 50 or _time_frame == 150:
                plt.imshow(_time_frame_image_swapped_rotated[int(
                    round(_cell_coordinates[2]))])
                plt.show()

        # update resolutions
        _angle = abs(_arguments['degrees_z'])
        _new_resolution_x = (_angle / 90) * _new_resolutions['y'] + (
            (90 - _angle) / 90) * _new_resolutions['x']
        _new_resolution_y = (_angle / 90) * _new_resolutions['x'] + (
            (90 - _angle) / 90) * _new_resolutions['y']
        _new_resolutions['x'] = _new_resolution_x
        _new_resolutions['y'] = _new_resolution_y

        _image_z, _image_y, _image_x = _time_frame_image_swapped_rotated.shape
        if not 0 <= _cell_coordinates[0] < _image_x or not \
                0 <= _cell_coordinates[1] < _image_y or not \
                0 <= _cell_coordinates[2] < _image_z:
            break

        # add to array
        _time_frames_data.append({
            'cell': {
                'coordinates': {
                    'x': _cell_coordinates[0],
                    'y': _cell_coordinates[1],
                    'z': _cell_coordinates[2]
                }
            },
            'resolutions': _new_resolutions
        })

        # save to pickle
        _time_frame_pickle_path = \
            paths.structured(_arguments['experiment'], _arguments['series_id'], _group, _time_frame)
        save_lib.to_pickle(_time_frame_image_swapped_rotated,
                           _time_frame_pickle_path)

    # save properties
    if _arguments['cell_type'] == 'real':
        _fake = False
        _static = False
    elif _arguments['cell_type'] == 'fake':
        _based_on_properties = \
            load.group_properties(_arguments['experiment'], _arguments['series_id'], 'cell_' + _group.split('fake_')[1])
        _fake = True
        _static = False
    elif _arguments['cell_type'] == 'static':
        _fake = True
        _static = True
    else:
        raise Exception('No such cell type')
    _properties_data = {
        'experiment': _arguments['experiment'],
        'series_id': _arguments['series_id'],
        'cell_id': _arguments['cell_id'],
        'time_points': _time_frames_data,
        'fake': _fake,
        'static': _static
    }
    _group_structured_path = paths.structured(_arguments['experiment'],
                                              _arguments['series_id'], _group)
    _properties_json_path = os.path.join(_group_structured_path,
                                         'properties.json')
    save_lib.to_json(_properties_data, _properties_json_path)
예제 #6
0
def process_series(_experiment, _series_id, _overwrite=False):
    _normalization_path = paths.normalization(_experiment, _series_id)
    if not _overwrite and os.path.isfile(_normalization_path):
        return

    _series_image_first_time_frame = load.series_image(_experiment,
                                                       _series_id)[0]
    _image_properties = load.image_properties(_experiment, _series_id)
    _cells = load.objects_time_frame_file_data(_experiment,
                                               _series_id,
                                               _time_frame=1)
    _cell_diameter_x = AVERAGE_CELL_DIAMETER_IN_MICRONS / _image_properties[
        'resolutions']['x']
    _cell_diameter_y = AVERAGE_CELL_DIAMETER_IN_MICRONS / _image_properties[
        'resolutions']['y']
    _cell_diameter_z = AVERAGE_CELL_DIAMETER_IN_MICRONS / _image_properties[
        'resolutions']['z']
    _z_shape, _y_shape, _x_shape = _series_image_first_time_frame.shape
    _z_step, _y_step, _x_step = [
        int(round(_value * STEP_PERCENTAGE))
        for _value in [_z_shape, _y_shape, _x_shape]
    ]

    _averages = []
    for _z, _y, _x in product(range(0, _z_shape, _z_step),
                              range(0, _y_shape, _y_step),
                              range(0, _x_shape, _x_step)):
        _x1 = _x - _cell_diameter_x / 2
        _x2 = _x1 + _cell_diameter_x
        _y1 = _y - _cell_diameter_y / 2
        _y2 = _y1 + _cell_diameter_y
        _z1 = _z - _cell_diameter_z / 2
        _z2 = _z1 + _cell_diameter_z
        _x1, _y1, _z1, _x2, _y2, _z2 = [
            int(round(_value)) for _value in [_x1, _y1, _z1, _x2, _y2, _z2]
        ]

        # window is in borders
        if all([
                _x1 >= 0, _x2 < _x_shape, _y1 >= 0, _y2 < _y_shape, _z1 >= 0,
                _z2 < _z_shape
        ]):

            # make sure no cells are around
            _in_window = False
            for _cell in _cells:
                _cell_x, _cell_y, _cell_z = _cell

                # cover entire box around the cell
                for _value_x, _value_y, _value_z in product(
                        CELL_BORDERS_VALUES, CELL_BORDERS_VALUES,
                        CELL_BORDERS_VALUES):
                    if is_in_window(_x1, _y1, _z1, _x2, _y2, _z2,
                                    _cell_x + _cell_diameter_x * _value_x,
                                    _cell_y + _cell_diameter_y * _value_y,
                                    _cell_z + _cell_diameter_z * _value_z):
                        _in_window = True
                        break

                # one cell is enough
                if _in_window:
                    break

            # one cell is enough
            if _in_window:
                continue

            # no cells are around, compute
            _pixels = _series_image_first_time_frame[_z1:_z2, _y1:_y2, _x1:_x2]

            # convert to 8 bit color depth
            if CONVERT_TO_COLOR_DEPTH_8_BIT:
                _pixels = np.rint(_pixels / (math.pow(2, 16) - 1) *
                                  (math.pow(2, 8) - 1)).astype(np.uint8)

            _averages.append(np.mean(_pixels))

    # compute average and std of averages
    _average, _std = np.mean(_averages), np.std(_averages)

    # save
    _normalization = {'average': _average, 'std': _std}
    save_lib.to_json(_normalization, _normalization_path)

    print('Saved', _experiment, _series_id, sep='\t')
예제 #7
0
def image_properties(_experiment, _series_id, _image_properties):
    _experiment_path = paths.image_properties(_experiment)
    os.mkdir(_experiment_path) if not os.path.isdir(_experiment_path) else None
    _path = os.path.join(_experiment_path,
                         'series_' + str(_series_id) + '.json')
    save_lib.to_json(_image_properties, _path)
예제 #8
0
def process_real_fake(_experiment,
                      _series_id,
                      _cells_coordinates,
                      _cell_1_id,
                      _cell_2_id,
                      _based_on_cell_id,
                      _fake_cell_x,
                      _fake_cell_y,
                      _series_image_by_time_frames,
                      _resolutions,
                      _overwrite=False):
    _time_frames_data = []
    _left_cell_id = None
    _right_cell_id = None
    _time_frames_amount = len([
        _value for _value in _cells_coordinates[_based_on_cell_id]
        if _value is not None
    ])

    # smooth coordinates
    _cells_coordinates_based_on_cell_smoothed = compute.smooth_coordinates_in_time(
        [
            _value for _value in _cells_coordinates[_based_on_cell_id]
            if _value is not None
        ],
        _n=SMOOTH_AMOUNT)
    _cells_coordinates_fake_cell_smoothed = compute.smooth_coordinates_in_time(
        [
            _value for _value in _cells_coordinates[_based_on_cell_id]
            if _value is not None
        ],
        _n=SMOOTH_AMOUNT)

    _group = 'cells_' + str(_cell_1_id) + '_' + str(_cell_2_id) + '_real_' + str(_based_on_cell_id) + \
             '_fake_' + str(_based_on_cell_id)

    # check if needed (missing time-point / properties file)
    if not _overwrite:
        _missing = False
        for _time_frame in range(_time_frames_amount):
            _time_frame_pickle_path = paths.structured(_experiment, _series_id,
                                                       _group, _time_frame)
            if not os.path.isfile(_time_frame_pickle_path):
                _missing = True
                break
        _group_structured_path = paths.structured(_experiment, _series_id,
                                                  _group)
        _properties_json_path = os.path.join(_group_structured_path,
                                             'properties.json')
        if not os.path.isfile(_properties_json_path):
            _missing = True
        if not _missing:
            return

    # compute change
    _x_change = _fake_cell_x - _cells_coordinates_based_on_cell_smoothed[0][0]
    _y_change = _fake_cell_y - _cells_coordinates_based_on_cell_smoothed[0][1]

    # running for each time point
    for _time_frame in range(_time_frames_amount):
        _time_frame_image = _series_image_by_time_frames[_time_frame]
        _based_on_cell_coordinates = [
            _value for _value in
            _cells_coordinates_based_on_cell_smoothed[_time_frame]
        ]
        _fake_cell_coordinates = [
            _value
            for _value in _cells_coordinates_fake_cell_smoothed[_time_frame]
        ]

        # update coordinates of fake
        _fake_cell_coordinates = [
            _based_on_cell_coordinates[0] + _x_change,
            _based_on_cell_coordinates[1] + _y_change,
            _based_on_cell_coordinates[2]
        ]

        # choose left and right cells
        if _time_frame == 0:
            if _based_on_cell_coordinates[0] <= _fake_cell_coordinates[0]:
                _left_cell_id, _right_cell_id = _cell_1_id, _cell_2_id
            else:
                _right_cell_id, _left_cell_id = _cell_1_id, _cell_2_id

        print(_experiment,
              'Series ' + str(_series_id),
              'Cell 1 #:',
              _cell_1_id,
              'Cell 2 #:',
              _cell_2_id,
              'Based on cell #:',
              _based_on_cell_id,
              'Time point:',
              _time_frame,
              sep='\t')

        # set coordinates
        if _left_cell_id == _cell_1_id:
            _left_cell_coordinates, _right_cell_coordinates = _based_on_cell_coordinates, _fake_cell_coordinates
        else:
            _right_cell_coordinates, _left_cell_coordinates = _based_on_cell_coordinates, _fake_cell_coordinates

        # compute padding
        _helper_coordinates = (_left_cell_coordinates[0] + 1,
                               _left_cell_coordinates[1])
        _angle = compute.angle_between_three_points(_right_cell_coordinates,
                                                    _left_cell_coordinates,
                                                    _helper_coordinates)
        _padding_x, _padding_y = compute.axes_padding(
            _2d_image_shape=_time_frame_image[0].shape, _angle=_angle)
        _left_cell_coordinates[0] += _padding_x
        _left_cell_coordinates[1] += _padding_y
        _right_cell_coordinates[0] += _padding_x
        _right_cell_coordinates[1] += _padding_y

        # rotate image and change axes
        _time_frame_image_rotated = np.array(
            [rotate(_z, _angle) for _z in _time_frame_image])
        _time_frame_image_swapped = np.swapaxes(_time_frame_image_rotated, 0,
                                                1)

        if SHOW_PLOTS:
            plt.imshow(_time_frame_image_rotated[int(
                round(_left_cell_coordinates[2]))])
            plt.show()
            plt.imshow(_time_frame_image_rotated[int(
                round(_right_cell_coordinates[2]))])
            plt.show()

        # update coordinates
        _image_center = compute.image_center_coordinates(
            _image_shape=reversed(_time_frame_image_rotated[0].shape))
        _left_cell_coordinates = compute.rotate_point_around_another_point(
            _point=_left_cell_coordinates,
            _angle_in_radians=math.radians(_angle),
            _around_point=_image_center)
        _right_cell_coordinates = compute.rotate_point_around_another_point(
            _point=_right_cell_coordinates,
            _angle_in_radians=math.radians(_angle),
            _around_point=_image_center)
        _fixed_y = (_left_cell_coordinates[1] + _right_cell_coordinates[1]) / 2
        # y is now z
        _left_cell_coordinates[1] = _left_cell_coordinates[2]
        _right_cell_coordinates[1] = _right_cell_coordinates[2]
        # z is now y
        _left_cell_coordinates[2] = _fixed_y
        _right_cell_coordinates[2] = _fixed_y

        if SHOW_PLOTS:
            plt.imshow(_time_frame_image_swapped[int(
                round(_left_cell_coordinates[2]))])
            plt.show()

        # swap resolutions
        _new_resolutions = {
            'x': _resolutions['x'],
            'y': _resolutions['z'],
            'z': _resolutions['y']
        }

        # second rotate, compute padding
        _helper_coordinates = (_left_cell_coordinates[0] + 1,
                               _left_cell_coordinates[1])
        _angle = compute.angle_between_three_points(_right_cell_coordinates,
                                                    _left_cell_coordinates,
                                                    _helper_coordinates)
        _padding_x, _padding_y = compute.axes_padding(
            _2d_image_shape=_time_frame_image_swapped[0].shape, _angle=_angle)
        _left_cell_coordinates[0] += _padding_x
        _left_cell_coordinates[1] += _padding_y
        _right_cell_coordinates[0] += _padding_x
        _right_cell_coordinates[1] += _padding_y

        # rotate image
        _time_frame_image_swapped_rotated = np.array(
            [rotate(_z, _angle) for _z in _time_frame_image_swapped])

        # update coordinates
        _image_center = compute.image_center_coordinates(
            _image_shape=reversed(_time_frame_image_swapped_rotated[0].shape))
        _left_cell_coordinates = compute.rotate_point_around_another_point(
            _point=_left_cell_coordinates,
            _angle_in_radians=math.radians(_angle),
            _around_point=_image_center)
        _right_cell_coordinates = compute.rotate_point_around_another_point(
            _point=_right_cell_coordinates,
            _angle_in_radians=math.radians(_angle),
            _around_point=_image_center)
        _fixed_y = (_left_cell_coordinates[1] + _right_cell_coordinates[1]) / 2
        _left_cell_coordinates[1] = _fixed_y
        _right_cell_coordinates[1] = _fixed_y

        if SHOW_PLOTS:
            if _time_frame == 0 or _time_frame == 50 or _time_frame == 150:
                plt.imshow(_time_frame_image_swapped_rotated[int(
                    round(_left_cell_coordinates[2]))])
                plt.show()

        # update resolutions
        _angle = abs(_angle)
        _new_resolution_x = (_angle / 90) * _new_resolutions['y'] + (
            (90 - _angle) / 90) * _new_resolutions['x']
        _new_resolution_y = (_angle / 90) * _new_resolutions['x'] + (
            (90 - _angle) / 90) * _new_resolutions['y']
        _new_resolutions['x'] = _new_resolution_x
        _new_resolutions['y'] = _new_resolution_y

        # TODO: if the cell coordinates are out of image write it somewhere, so when checking for "overwrite"
        #  it will know when to stop
        _image_z, _image_y, _image_x = _time_frame_image_swapped_rotated.shape
        if not 0 <= _left_cell_coordinates[0] < _image_x or not \
                0 <= _left_cell_coordinates[1] < _image_y or not \
                0 <= _left_cell_coordinates[2] < _image_z:
            break
        if not 0 <= _right_cell_coordinates[0] < _image_x or not \
                0 <= _right_cell_coordinates[1] < _image_y or not \
                0 <= _right_cell_coordinates[2] < _image_z:
            break

        # add to array
        _time_frames_data.append({
            'left_cell': {
                'coordinates': {
                    'x': _left_cell_coordinates[0],
                    'y': _left_cell_coordinates[1],
                    'z': _left_cell_coordinates[2]
                }
            },
            'right_cell': {
                'coordinates': {
                    'x': _right_cell_coordinates[0],
                    'y': _right_cell_coordinates[1],
                    'z': _right_cell_coordinates[2]
                }
            },
            'resolutions': _new_resolutions
        })

        # save to pickle
        _time_frame_pickle_path = paths.structured(_experiment, _series_id,
                                                   _group, _time_frame)
        save_lib.to_pickle(_time_frame_image_swapped_rotated,
                           _time_frame_pickle_path)

    # save properties
    _based_on_properties = \
        load.group_properties(_experiment, _series_id, 'cells_' + str(_cell_1_id) + '_' + str(_cell_2_id))
    _properties_data = {
        'experiment': _experiment,
        'series_id': _series_id,
        'cells_ids': {
            'left_cell': _left_cell_id,
            'right_cell': _right_cell_id
        },
        'time_points': _time_frames_data,
        'band': _based_on_properties['band'],
        'fake': False,
        'static': False,
        'real_fake': True
    }
    _group_structured_path = paths.structured(_experiment, _series_id, _group)
    _properties_json_path = os.path.join(_group_structured_path,
                                         'properties.json')
    save_lib.to_json(_properties_data, _properties_json_path)