def run_GN_iter(self, num_cg_iter):
        """Runs a single GN iteration."""

        self.x.requires_grad(True)

        # Evaluate function at current estimate
        self.f0 = self.problem(self.x)

        # Create copy with graph detached
        self.g = self.f0.vdetach()

        self.g.requires_grad(True)

        # Get df/dx^t @ f0
        self.dfdxt_g = TensorList(
            torch.autograd.grad(self.f0, self.x, self.g, create_graph=True))

        # Get the right hand side
        self.b = -self.dfdxt_g.vdetach()

        # Run CG
        delta_x, res = self.run_CG(num_cg_iter, eps=self.cg_eps)

        self.x.vdetach_()
        self.x.plus_(delta_x)
예제 #2
0
 def __init__(self, training_samples: TensorList, y: TensorList,
              filter_reg: torch.Tensor, sample_weights: TensorList,
              response_activation):
     self.training_samples = training_samples.variable()
     self.y = y.variable()
     self.filter_reg = filter_reg
     self.sample_weights = sample_weights
     self.response_activation = response_activation
예제 #3
0
 def get_attribute(self, name: str, ignore_missing: bool = False):
     if ignore_missing:
         return TensorList([
             getattr(f, name) for f in self.features
             if self._return_feature(f) and hasattr(f, name)
         ])
     else:
         return TensorList([
             getattr(f, name, None) for f in self.features
             if self._return_feature(f)
         ])
    def run(self, num_iter, dummy=None):

        if num_iter == 0:
            return

        for i in range(num_iter):
            self.x.requires_grad(True)

            # Evaluate function at current estimate
            loss = self.problem(self.x)

            # Compute grad
            grad = TensorList(torch.autograd.grad(loss, self.x))

            # Update direction
            if self.dir is None:
                self.dir = grad
            else:
                self.dir = grad + self.momentum * self.dir

            self.x.detach()
            self.x -= self.step_legnth * self.dir

        self.x.detach()
        self.clear_temp()
 def A(self, x):
     dfdx_x = torch.autograd.grad(self.dfdxt_g,
                                  self.g,
                                  x,
                                  retain_graph=True)
     return TensorList(
         torch.autograd.grad(self.f0, self.x, dfdx_x, retain_graph=True))
    def evaluate_CG_iteration(self, delta_x):
        if self.analyze_convergence:
            x = (self.x + delta_x).detach()
            x.requires_grad_(True)

            # compute loss and gradient
            loss = self.problem(x)
            grad = TensorList(torch.autograd.grad(loss, x))

            # store in the vectors
            self.losses = torch.cat(
                (self.losses, loss.detach().cpu().view(-1)))
            self.gradient_mags = torch.cat(
                (self.gradient_mags,
                 sum(grad.view(-1)
                     @ grad.view(-1)).cpu().sqrt().detach().view(-1)))
    def __init__(self,
                 problem: L2Problem,
                 variable: TensorList,
                 cg_eps=0.0,
                 fletcher_reeves=True,
                 standard_alpha=True,
                 direction_forget_factor=0,
                 debug=False,
                 plotting=False,
                 fig_num=(10, 11)):
        super().__init__(fletcher_reeves, standard_alpha,
                         direction_forget_factor, debug or plotting)

        self.problem = problem
        self.x = variable.variable()

        self.plotting = plotting
        self.fig_num = fig_num

        self.cg_eps = cg_eps
        self.f0 = None
        self.g = None
        self.dfdxt_g = None

        self.residuals = torch.zeros(0)
        self.losses = torch.zeros(0)
예제 #8
0
 def get_fparams(self, name: str = None):
     if name is None:
         return [
             f.fparams for f in self.features if self._return_feature(f)
         ]
     return TensorList([
         getattr(f.fparams, name) for f in self.features
         if self._return_feature(f)
     ]).unroll()
    def run_newton_iter(self, num_cg_iter):

        self.x.requires_grad(True)

        # Evaluate function at current estimate
        self.f0 = self.problem(self.x)

        # Gradient of loss
        self.g = TensorList(
            torch.autograd.grad(self.f0, self.x, create_graph=True))

        # Get the right hand side
        self.b = -self.g.vdetach()

        # Run CG
        delta_x, res = self.run_CG(num_cg_iter, eps=self.cg_eps)

        self.x.vdetach_()
        self.x.plus_(delta_x)
예제 #10
0
    def extract_patches(self, im_patches):
        """Extract features.
        args:
            im: Image.
        """
        # Compute features
        # print (im_patches.shape)
        feature_map = TensorList(
            [f.get_feature(im_patches) for f in self.features]).unroll()

        return feature_map
예제 #11
0
    def __init__(self, training_samples: TensorList, y: TensorList, filter_reg: torch.Tensor, projection_reg, params, sample_weights: TensorList,
                 projection_activation, response_activation):
        self.training_samples = training_samples
        self.y = y.variable()
        self.filter_reg = filter_reg
        self.sample_weights = sample_weights
        self.params = params
        self.projection_reg = projection_reg
        self.projection_activation = projection_activation
        self.response_activation = response_activation

        self.diag_M = self.filter_reg.concat(projection_reg)
    def run(self, num_cg_iter):
        """Run the oprimizer with the provided number of iterations."""

        if num_cg_iter == 0:
            return

        lossvec = None
        if self.debug:
            lossvec = torch.zeros(2)

        self.x.requires_grad(True)

        # Evaluate function at current estimate
        self.f0 = self.problem(self.x)

        # Create copy with graph detached
        self.g = self.f0.vdetach()

        if self.debug:
            lossvec[0] = self.problem.ip_output(self.g, self.g)

        self.g.requires_grad(True)

        # Get df/dx^t @ f0
        self.dfdxt_g = TensorList(
            torch.autograd.grad(self.f0, self.x, self.g, create_graph=True))

        # Get the right hand side
        self.b = -self.dfdxt_g.vdetach()

        # Run CG
        delta_x, res = self.run_CG(num_cg_iter, eps=self.cg_eps)

        self.x.vdetach_()
        self.x.plus_(delta_x)

        self.x.vdetach_()
        self.clear_temp()
예제 #13
0
    def extract(self, im, pos, scales, image_sz):
        if isinstance(scales, (int, float)):
            scales = [scales]

        # Get image patches
        im_patches = torch.cat(
            [sample_patch(im, pos, s * image_sz, image_sz) for s in scales])

        # Compute features
        feature_map = torch.cat(TensorList(
            [f.get_feature(im_patches) for f in self.features]).unroll(),
                                dim=1)

        return feature_map
예제 #14
0
    def extract(self, im, pos, scales, image_sz):
        """Extract features.
        args:
            im: Image.
            pos: Center position for extraction.
            scales: Image scales to extract features from.
            image_sz: Size to resize the image samples to before extraction.
        """
        if isinstance(scales, (int, float)):
            scales = [scales]

        # Get image patches
        im_patches = torch.cat(
            [sample_patch(im, pos, s * image_sz, image_sz) for s in scales])

        # Compute features
        feature_map = TensorList(
            [f.get_feature(im_patches) for f in self.features]).unroll()

        return feature_map
예제 #15
0
    def extract_transformed(self, im, pos, scale, image_sz, transforms):
        """Extract features from a set of transformed image samples.
        args:
            im: Image.
            pos: Center position for extraction.
            scale: Image scale to extract features from.
            image_sz: Size to resize the image samples to before extraction.
            transforms: A set of image transforms to apply.
        """

        # Get image patche
        im_patch = sample_patch(im, pos, scale * image_sz, image_sz).data

        # Apply transforms
        im_patches = torch.cat([T(im_patch).data for T in transforms])

        # Compute features
        feature_map = TensorList(
            [f.get_feature(im_patches) for f in self.features]).unroll()

        return feature_map
 def A(self, x):
     return TensorList(
         torch.autograd.grad(self.g, self.x, x,
                             retain_graph=True)) + self.hessian_reg * x
예제 #17
0
 def stride(self):
     return torch.Tensor(
         TensorList([
             f.stride() for f in self.features if self._return_feature(f)
         ]).unroll())
class NewtonCG(ConjugateGradientBase):
    """Newton with Conjugate Gradient. Handels general minimization problems."""
    def __init__(self,
                 problem: MinimizationProblem,
                 variable: TensorList,
                 init_hessian_reg=0.0,
                 hessian_reg_factor=1.0,
                 cg_eps=0.0,
                 fletcher_reeves=True,
                 standard_alpha=True,
                 direction_forget_factor=0,
                 debug=False,
                 analyze=False,
                 plotting=False,
                 fig_num=(10, 11, 12)):
        super().__init__(fletcher_reeves, standard_alpha,
                         direction_forget_factor, debug or analyze or plotting)

        self.problem = problem
        self.x = variable

        self.analyze_convergence = analyze
        self.plotting = plotting
        self.fig_num = fig_num

        self.hessian_reg = init_hessian_reg
        self.hessian_reg_factor = hessian_reg_factor
        self.cg_eps = cg_eps
        self.f0 = None
        self.g = None

        self.residuals = torch.zeros(0)
        self.losses = torch.zeros(0)
        self.gradient_mags = torch.zeros(0)

    def clear_temp(self):
        self.f0 = None
        self.g = None

    def run(self, num_cg_iter, num_newton_iter=None):

        if isinstance(num_cg_iter, int):
            if num_cg_iter == 0:
                return
            if num_newton_iter is None:
                num_newton_iter = 1
            num_cg_iter = [num_cg_iter] * num_newton_iter

        num_newton_iter = len(num_cg_iter)
        if num_newton_iter == 0:
            return

        if self.analyze_convergence:
            self.evaluate_CG_iteration(0)

        for cg_iter in num_cg_iter:
            self.run_newton_iter(cg_iter)
            self.hessian_reg *= self.hessian_reg_factor

        self.x.vdetach_()
        self.clear_temp()

        return self.losses, self.residuals

    def run_newton_iter(self, num_cg_iter):

        self.x.requires_grad(True)

        # Evaluate function at current estimate
        self.f0 = self.problem(self.x)

        # Gradient of loss
        self.g = TensorList(
            torch.autograd.grad(self.f0, self.x, create_graph=True))

        # Get the right hand side
        self.b = -self.g.vdetach()

        # Run CG
        delta_x, res = self.run_CG(num_cg_iter, eps=self.cg_eps)

        self.x.vdetach_()
        self.x.plus_(delta_x)

    def A(self, x):
        return TensorList(
            torch.autograd.grad(self.g, self.x, x,
                                retain_graph=True)) + self.hessian_reg * x

    def ip(self, a, b):
        # Implements the inner product
        return self.problem.ip_input(a, b)

    def M1(self, x):
        return self.problem.M1(x)

    def M2(self, x):
        return self.problem.M2(x)

    def evaluate_CG_iteration(self, delta_x):
        if self.analyze_convergence:
            x = (self.x + delta_x).detach()
            x.requires_grad_(True)

            # compute loss and gradient
            loss = self.problem(x)
            grad = TensorList(torch.autograd.grad(loss, x))

            # store in the vectors
            self.losses = torch.cat(
                (self.losses, loss.detach().cpu().view(-1)))
            self.gradient_mags = torch.cat(
                (self.gradient_mags,
                 sum(grad.view(-1)
                     @ grad.view(-1)).cpu().sqrt().detach().view(-1)))
예제 #19
0
 def size(self, input_sz):
     return TensorList([
         f.size(input_sz) for f in self.features if self._return_feature(f)
     ]).unroll()
예제 #20
0
 def dim(self):
     return TensorList([
         f.dim() for f in self.features if self._return_feature(f)
     ]).unroll()
class GaussNewtonCG(ConjugateGradientBase):
    """Gauss-Newton with Conjugate Gradient optimizer."""
    def __init__(self,
                 problem: L2Problem,
                 variable: TensorList,
                 cg_eps=0.0,
                 fletcher_reeves=True,
                 standard_alpha=True,
                 direction_forget_factor=0,
                 debug=False,
                 analyze=False,
                 plotting=False,
                 fig_num=(10, 11, 12)):
        super().__init__(fletcher_reeves, standard_alpha,
                         direction_forget_factor, debug or analyze or plotting)

        self.problem = problem
        self.x = variable

        self.analyze_convergence = analyze
        self.plotting = plotting
        self.fig_num = fig_num

        self.cg_eps = cg_eps
        self.f0 = None
        self.g = None
        self.dfdxt_g = None

        self.residuals = torch.zeros(0)
        self.losses = torch.zeros(0)
        self.gradient_mags = torch.zeros(0)

    def clear_temp(self):
        self.f0 = None
        self.g = None
        self.dfdxt_g = None

    def run_GN(self, *args, **kwargs):
        return self.run(*args, **kwargs)

    def run(self, num_cg_iter, num_gn_iter=None):
        """Run the optimizer.
        args:
            num_cg_iter: Number of CG iterations per GN iter. If list, then each entry specifies number of CG iterations
                         and number of GN iterations is given by the length of the list.
            num_gn_iter: Number of GN iterations. Shall only be given if num_cg_iter is an integer.
        """

        if isinstance(num_cg_iter, int):
            if num_gn_iter is None:
                raise ValueError(
                    'Must specify number of GN iter if CG iter is constant')
            num_cg_iter = [num_cg_iter] * num_gn_iter

        num_gn_iter = len(num_cg_iter)
        if num_gn_iter == 0:
            return

        if self.analyze_convergence:
            self.evaluate_CG_iteration(0)

        # Outer loop for running the GN iterations.
        for cg_iter in num_cg_iter:
            self.run_GN_iter(cg_iter)

        self.x.vdetach_()
        self.clear_temp()

        return self.losses, self.residuals

    def run_GN_iter(self, num_cg_iter):
        """Runs a single GN iteration."""

        self.x.requires_grad(True)

        # Evaluate function at current estimate
        self.f0 = self.problem(self.x)

        # Create copy with graph detached
        self.g = self.f0.vdetach()

        self.g.requires_grad(True)

        # Get df/dx^t @ f0
        self.dfdxt_g = TensorList(
            torch.autograd.grad(self.f0, self.x, self.g, create_graph=True))

        # Get the right hand side
        self.b = -self.dfdxt_g.vdetach()

        # Run CG
        delta_x, res = self.run_CG(num_cg_iter, eps=self.cg_eps)

        self.x.vdetach_()
        self.x.plus_(delta_x)

    def A(self, x):
        dfdx_x = torch.autograd.grad(self.dfdxt_g,
                                     self.g,
                                     x,
                                     retain_graph=True)
        return TensorList(
            torch.autograd.grad(self.f0, self.x, dfdx_x, retain_graph=True))

    def ip(self, a, b):
        return self.problem.ip_input(a, b)

    def M1(self, x):
        return self.problem.M1(x)

    def M2(self, x):
        return self.problem.M2(x)

    def evaluate_CG_iteration(self, delta_x):
        if self.analyze_convergence:
            x = (self.x + delta_x).detach()
            x.requires_grad_(True)

            # compute loss and gradient
            f = self.problem(x)
            loss = self.problem.ip_output(f, f)
            grad = TensorList(torch.autograd.grad(loss, x))

            # store in the vectors
            self.losses = torch.cat(
                (self.losses, loss.detach().cpu().view(-1)))
            self.gradient_mags = torch.cat(
                (self.gradient_mags,
                 sum(grad.view(-1)
                     @ grad.view(-1)).cpu().sqrt().detach().view(-1)))
class ConjugateGradient(ConjugateGradientBase):
    """Conjugate Gradient optimizer, performing single linearization of the residuals in the start."""
    def __init__(self,
                 problem: L2Problem,
                 variable: TensorList,
                 cg_eps=0.0,
                 fletcher_reeves=True,
                 standard_alpha=True,
                 direction_forget_factor=0,
                 debug=False,
                 plotting=False,
                 fig_num=(10, 11)):
        super().__init__(fletcher_reeves, standard_alpha,
                         direction_forget_factor, debug or plotting)

        self.problem = problem
        self.x = variable.variable()

        self.plotting = plotting
        self.fig_num = fig_num

        self.cg_eps = cg_eps
        self.f0 = None
        self.g = None
        self.dfdxt_g = None

        self.residuals = torch.zeros(0)
        self.losses = torch.zeros(0)

    def clear_temp(self):
        self.f0 = None
        self.g = None
        self.dfdxt_g = None

    def run(self, num_cg_iter):
        """Run the oprimizer with the provided number of iterations."""

        if num_cg_iter == 0:
            return

        lossvec = None
        if self.debug:
            lossvec = torch.zeros(2)

        self.x.requires_grad(True)

        # Evaluate function at current estimate
        self.f0 = self.problem(self.x)

        # Create copy with graph detached
        self.g = self.f0.vdetach()

        if self.debug:
            lossvec[0] = self.problem.ip_output(self.g, self.g)

        self.g.requires_grad(True)

        # Get df/dx^t @ f0
        self.dfdxt_g = TensorList(
            torch.autograd.grad(self.f0, self.x, self.g, create_graph=True))

        # Get the right hand side
        self.b = -self.dfdxt_g.vdetach()

        # Run CG
        delta_x, res = self.run_CG(num_cg_iter, eps=self.cg_eps)

        self.x.vdetach_()
        self.x.plus_(delta_x)

        self.x.vdetach_()
        self.clear_temp()

    def A(self, x):
        dfdx_x = torch.autograd.grad(self.dfdxt_g,
                                     self.g,
                                     x,
                                     retain_graph=True)
        return TensorList(
            torch.autograd.grad(self.f0, self.x, dfdx_x, retain_graph=True))

    def ip(self, a, b):
        return self.problem.ip_input(a, b)

    def M1(self, x):
        return self.problem.M1(x)

    def M2(self, x):
        return self.problem.M2(x)
예제 #23
0
 def size(self, im_sz):
     if self.output_size is None:
         return TensorList([im_sz / s for s in self.stride()])
     if isinstance(im_sz, torch.Tensor):
         return TensorList([im_sz / s if sz is None else torch.Tensor([sz[0], sz[1]]) for sz, s in zip(self.output_size, self.stride())])