예제 #1
0
    def init_learning_ops(self):
        print("Initializing learning Ops...")
        if self._learning_algorithm == spn.GDLearning:
            learning = spn.GDLearning(
                self._root,
                log=True,
                value_inference_type=self._value_inference_type,
                learning_rate=self._learning_rate,
                learning_type=self._learning_type,
                learning_inference_type=self._learning_inference_type,
                use_unweighted=True)
            self._reset_accumulators = learning.reset_accumulators()
            self._learn_spn = learning.learn(optimizer=self._optimizer)

        elif self._learning_algorithm == spn.EMLearning:
            learning = spn.EMLearning(
                self._root,
                log=True,
                value_inference_type=self._value_inference_type,
                additive_smoothing=self._additive_smoothing_var,
                use_unweighted=True,
                initial_accum_value=self._init_accum)
            self._reset_accumulators = learning.reset_accumulators()
            self._learn_spn = learning.accumulate_updates()
            self._update_spn = learning.update_spn()

        self._log_likelihood_root = learning.value.values[self._root]
        self._avg_train_likelihood = tf.reduce_mean(self._log_likelihood_root)
예제 #2
0
# Admittedly, more time needs to be spent on the interdependencies of
# parameters (e.g. <code>scale_init</code>) affect training</p>
#

# In[5]:

from libspn.examples.convspn.amsgrad import AMSGrad

# Op for initializing all weights
weight_init_op = spn.initialize_weights(root)
# Op for getting the log probability of the root
root_log_prob = root.get_log_value(inference_type=inference_type)

# Set up ops for discriminative GD learning
gd_learning = spn.GDLearning(
    root=root,
    learning_task_type=spn.LearningTaskType.SUPERVISED,
    learning_method=spn.LearningMethodType.DISCRIMINATIVE)
optimizer = AMSGrad(learning_rate=learning_rate)

# Use post_gradients_ops = True to also normalize weights (and clip Gaussian variance)
gd_update_op = gd_learning.learn(optimizer=optimizer, post_gradient_ops=True)

# Compute predictions and matches
mpe_state = spn.MPEState()
root_marginalized = spn.Sum(root.values[0], weights=root.weights)
marginalized_ivs = root_marginalized.generate_latent_indicators(
    feed=-tf.ones_like(class_indicators.feed))
predictions, = mpe_state.get_state(root_marginalized, marginalized_ivs)
with tf.name_scope("MatchPredictionsAndTarget"):
    match_op = tf.equal(tf.to_int64(predictions),
                        tf.to_int64(class_indicators.feed))
예제 #3
0
spn.generate_weights(root)

print("SPN depth: {}".format(root.get_depth()))
print("Number of products layers: {}".format(
    root.get_num_nodes(node_type=spn.ProductsLayer)))
print("Number of sums layers: {}".format(
    root.get_num_nodes(node_type=spn.SumsLayer)))

# Op for initializing all weights
weight_init_op = spn.initialize_weights(root)
# Op for getting the log probability of the root
root_log_prob = root.get_log_value(inference_type=inference_type)

# Helper for constructing EM learning ops
em_learning = spn.GDLearning(initial_accum_value=initial_accum_value,
                             root=root,
                             value_inference_type=inference_type)
# Accumulate counts and update weights
online_em_update_op = em_learning.accumulate_and_update_weights()
# Op for initializing accumulators
init_accumulators = em_learning.reset_accumulators()

# MPE state generator
mpe_state_generator = spn.MPEState()
# Generate MPE state ops for leaf indicator and class indicator
leaf_indicator_mpe, class_indicator_mpe = mpe_state_generator.get_state(
    root, leaf_indicators, class_indicators)

spn.display_tf_graph()

# Set up some convenient iterators
예제 #4
0
파일: train.py 프로젝트: danhlephuoc/libspn
def setup_learning(args, in_var, root):
    no_op = tf.constant(0)
    inference_type = spn.InferenceType.MARGINAL if args.value_inf_type == 'marginal' \
        else spn.InferenceType.MPE
    mpe_state = spn.MPEState(value_inference_type=inference_type,
                             matmul_or_conv=True)
    if args.supervised:
        # Root is provided with labels, p(x,y)
        labels_node = root.generate_latent_indicators(name="LabelIndicators")

        # Marginalized root, so without filling in labels, so p(x) = \sum_y p(x,y)
        root_marginalized = spn.Sum(*root.values,
                                    name="RootMarginalized",
                                    weights=root.weights)
        # A dummy node to get MPE state
        labels_no_evidence_node = root_marginalized.generate_latent_indicators(
            name="LabesNoEvidenceIndicators",
            feed=-tf.ones([tf.shape(in_var.feed)[0], 1], dtype=tf.int32))

        # Get prediction from dummy node
        with tf.name_scope("Prediction"):
            logger.info("Setting up MPE state")
            if args.completion_by_marginal and isinstance(
                    in_var, ContinuousLeafBase):
                in_var_mpe = in_var.impute_by_posterior_marginal(
                    labels_no_evidence_node)
                class_mpe, = mpe_state.get_state(root_marginalized,
                                                 labels_no_evidence_node)
            else:
                class_mpe, in_var_mpe = mpe_state.get_state(
                    root_marginalized, labels_no_evidence_node, in_var)
            correct = tf.squeeze(
                tf.equal(class_mpe, tf.to_int64(labels_node.feed)))
    else:
        with tf.name_scope("Prediction"):
            class_mpe = correct = no_op
            labels_node = root_marginalized = None
            if args.completion_by_marginal and isinstance(
                    in_var, ContinuousLeafBase):
                in_var_mpe = in_var.impute_by_posterior_marginal(root)
            else:
                in_var_mpe, = mpe_state.get_state(root, in_var)

    # Get the log likelihood
    with tf.name_scope("LogLikelihoods"):
        logger.info("Setting up log-likelihood")
        val_gen = spn.LogValue(inference_type=inference_type)
        labels_llh = val_gen.get_value(root)
        no_labels_llh = val_gen.get_value(
            root_marginalized) if args.supervised else labels_llh

    if args.learning_algo == "em":
        em_learning = spn.HardEMLearning(
            root,
            value_inference_type=inference_type,
            initial_accum_value=args.initial_accum_value,
            sample_winner=args.sample_path,
            sample_prob=args.sample_prob,
            use_unweighted=args.use_unweighted)
        accumulate = em_learning.accumulate_updates()
        with tf.control_dependencies([accumulate]):
            update_op = em_learning.update_spn()

        return correct, labels_node, labels_llh, no_labels_llh, update_op, class_mpe, no_op, \
               no_op, in_var_mpe

    logger.info("Setting up GD learning")
    global_step = tf.Variable(0, trainable=False)
    learning_rate = tf.train.exponential_decay(args.learning_rate,
                                               global_step,
                                               args.lr_decay_steps,
                                               args.lr_decay_rate,
                                               staircase=True)
    learning_method = spn.LearningMethodType.DISCRIMINATIVE if args.learning_type == 'discriminative' else \
        spn.LearningMethodType.GENERATIVE
    learning = spn.GDLearning(
        root, learning_task_type=spn.LearningTaskType.SUPERVISED if args.supervised else \
            spn.LearningTaskType.UNSUPERVISED,
        learning_method=learning_method, learning_rate=learning_rate,
        marginalizing_root=root_marginalized, global_step=global_step)

    optimizer = {
        'adam': tf.train.AdamOptimizer,
        'rmsprop': tf.train.RMSPropOptimizer,
        'amsgrad': AMSGrad,
    }[args.learning_algo]()
    minimize_op, _ = learning.learn(optimizer=optimizer)

    logger.info("Settting up test loss")
    with tf.name_scope("DeterministicLoss"):
        main_loss = learning.loss()
        regularization_loss = learning.regularization_loss()
        loss_per_sample = learning.loss(
            reduce_fn=lambda x: tf.reshape(x, (-1, )))

    return correct, labels_node, main_loss, no_labels_llh, minimize_op, class_mpe, \
           regularization_loss, loss_per_sample, in_var_mpe