def build(self, input_shape): # Create a trainable weight variable for this layer. self._inferred_dimension_permutation = infer_dimension_permutation(input_shape) \ if self.dimension_permutation == DimensionPermutation.AUTO \ else self.dimension_permutation if self._inferred_dimension_permutation == DimensionPermutation.BATCH_FIRST: self._num_nodes_in = num_nodes_in = np.prod(input_shape[1:]) else: num_scopes_in, num_decomps_in, _, num_nodes_in = input_shape self._num_nodes_in = num_nodes_in if num_scopes_in != 1 or num_decomps_in != 1: raise ValueError("Number of scopes and decomps must both be 1") initializer = self.accumulator_initializer accumulator_constraint = self.linear_accumulator_constraint if self.logspace_accumulators: initializer = logspace_wrapper_initializer(initializer) accumulator_constraint = None self.accumulators = self.add_weight( name='weights', shape=(num_nodes_in, ), initializer=initializer, regularizer=self.accumulator_regularizer, constraint=accumulator_constraint)
def build(self, input_shape: Tuple[Optional[int], ...]) -> None: """ Build the internal components for this leaf layer. Args: input_shape: Shape of the input Tensor. """ # Create a trainable weight variable for this layer. _, num_scopes_vertical, num_scopes_horizontal, num_channels_in = input_shape weights_shape = (1, 1, num_channels_in, self.num_sums) initializer = self.accumulator_initializer accumulator_contraint = self.linear_accumulator_constraint if self.logspace_accumulators: initializer = logspace_wrapper_initializer(initializer) accumulator_contraint = self.logspace_accumulator_constraint self._accumulators = self.add_weight( name="sum_weights", shape=weights_shape, initializer=initializer, regularizer=self.accumulator_regularizer, constraint=accumulator_contraint, ) super(DenseSum, self).build(input_shape)
def build(self, input_shape): # Create a trainable weight variable for this layer. self._num_scopes, self._num_decomps, _, num_nodes_in = input_shape weights_shape = (self._num_scopes, self._num_decomps, num_nodes_in, self.num_sums) initializer = self.accumulator_initializer accumulator_constraint = self.linear_accumulator_constraint if self.logspace_accumulators: initializer = logspace_wrapper_initializer(self.accumulator_initializer) accumulator_constraint = None self._accumulators = self.add_weight( name='sum_weights', shape=weights_shape, initializer=initializer, regularizer=self.accumulator_regularizer, constraint=accumulator_constraint ) super(DenseSum, self).build(input_shape)
def build(self, input_shape): # Create a trainable weight variable for this layer. _, num_scopes_vertical, num_scopes_horizontal, num_channels_in = input_shape weights_shape = (1, 1, num_channels_in, self.num_sums) initializer = self.accumulator_initializer accumulator_contraint = self.linear_accumulator_constraint if self.logspace_accumulators: initializer = logspace_wrapper_initializer(initializer) accumulator_contraint = None self.accumulators = self.add_weight( name='sum_weights', shape=weights_shape, initializer=initializer, regularizer=self.accumulator_regularizer, constraint=accumulator_contraint ) super(Conv2DSum, self).build(input_shape)
def build(self, input_shape): _, num_scopes_in, num_decomps_in, self._num_nodes_in = input_shape if num_scopes_in != 1 or num_decomps_in != 1: raise ValueError("Number of scopes and decomps must both be 1") initializer = self.accumulator_initializer accumulator_constraint = self.linear_accumulator_constraint if self.logspace_accumulators: initializer = logspace_wrapper_initializer(initializer) accumulator_constraint = None self.accumulators = self.add_weight( name='weights', shape=(self._num_nodes_in, ), initializer=initializer, regularizer=self.accumulator_regularizer, constraint=accumulator_constraint)
def build(self, input_shape: Tuple[Optional[int], ...]) -> None: """ Build the internal components for this layer. Args: input_shape: Shape of the input Tensor. """ # Create a trainable weight variable for this layer. _, self._num_scopes, self._num_decomps, self._num_nodes_in = input_shape weights_shape = ( self._num_scopes, self._num_decomps, self._num_nodes_in, self.num_sums, ) initializer = self.accumulator_initializer accumulator_constraint = self.linear_accumulator_constraint if self.logspace_accumulators: initializer = logspace_wrapper_initializer( self.accumulator_initializer) accumulator_constraint = self.logspace_accumulator_constraint self._accumulators = self.add_weight( name="sum_weights", shape=weights_shape, initializer=initializer, regularizer=self.accumulator_regularizer, constraint=accumulator_constraint, ) if accumulator_constraint is not None: self._accumulators.assign( accumulator_constraint(self._accumulators)) self._forward_normalize = not isinstance( accumulator_constraint, (GreaterEqualEpsilonNormalized, LogNormalized)) super(DenseSum, self).build(input_shape)