def print_summary(self, decimals=2, style=None, columns=None, **kwargs): """ Print summary statistics describing the fit, the coefficients, and the error bounds. Parameters ----------- decimals: int, optional (default=2) specify the number of decimal places to show style: string {html, ascii, latex} columns: only display a subset of ``summary`` columns. Default all. kwargs: print additional meta data in the output (useful to provide model names, dataset names, etc.) when comparing multiple outputs. """ justify = string_rjustify(18) headers = [] if self.event_col: headers.append(("event col", "'%s'" % self.event_col)) if self.weights_col: headers.append(("weights col", "'%s'" % self.weights_col)) if isinstance(self.penalizer, np.ndarray) or self.penalizer > 0: headers.append(("penalizer", self.penalizer)) if self.strata: headers.append(("strata", self.strata)) headers.extend([ ("number of subjects", self._n_unique), ("number of periods", self._n_examples), ("number of events", self.event_observed.sum()), ("partial log-likelihood", "{:.{prec}f}".format(self.log_likelihood_, prec=decimals)), ("time fit was run", self._time_fit_was_called), ]) sr = self.log_likelihood_ratio_test() footers = [] footers.extend([ ("Partial AIC", "{:.{prec}f}".format(self.AIC_partial_, prec=decimals)), ( "log-likelihood ratio test", "{:.{prec}f} on {} df".format(sr.test_statistic, sr.degrees_freedom, prec=decimals), ), ("-log2(p) of ll-ratio test", "{:.{prec}f}".format(-utils.quiet_log2(sr.p_value), prec=decimals)), ]) p = Printer(self, headers, footers, justify, kwargs, decimals, columns) p.print(style=style)
def print_summary(self, decimals=2, style=None, columns=None, **kwargs): """ Print summary statistics describing the fit, the coefficients, and the error bounds. Parameters ----------- decimals: int, optional (default=2) specify the number of decimal places to show style: string {html, ascii, latex} columns: only display a subset of ``summary`` columns. Default all. kwargs: print additional meta data in the output (useful to provide model names, dataset names, etc.) when comparing multiple outputs. """ justify = string_rjustify(25) headers = [] headers.append(("duration col", "'%s'" % self.duration_col)) if self.event_col: headers.append(("event col", "'%s'" % self.event_col)) if self.weights_col: headers.append(("weights col", "'%s'" % self.weights_col)) if self.coef_penalizer > 0: headers.append(("coef penalizer", self.coef_penalizer)) if self.smoothing_penalizer > 0: headers.append(("smoothing penalizer", self.smoothing_penalizer)) headers.extend([ ("number of subjects", self._n_examples), ("number of events observed", self.event_observed.sum()), ("time fit was run", self._time_fit_was_called), ]) footers = [("Concordance", "{:.{prec}f}".format(self.concordance_index_, prec=decimals))] p = Printer(self, headers, footers, justify, kwargs, decimals, columns) p.print(style=style)
def print_summary(self, decimals=2, style=None, **kwargs): """ Print summary statistics describing the fit, the coefficients, and the error bounds. Parameters ----------- decimals: int, optional (default=2) specify the number of decimal places to show style: string {html, ascii, latex} kwargs: print additional meta data in the output (useful to provide model names, dataset names, etc.) when comparing multiple outputs. """ justify = string_justify(18) headers = [] if self.event_col: headers.append(("event col", "'%s'" % self.event_col)) if self.weights_col: headers.append(("weights col", "'%s'" % self.weights_col)) if self.penalizer > 0: headers.append(("penalizer", self.penalizer)) if self.strata: headers.append(("strata", self.strata)) headers.extend([ ("number of subjects", self._n_unique), ("number of periods", self._n_examples), ("number of events", self.event_observed.sum()), ("partial log-likelihood", "{:.{prec}f}".format(self.log_likelihood_, prec=decimals)), ("time fit was run", self._time_fit_was_called), ]) p = Printer(headers, self, justify, decimals, kwargs) p.print(style=style)