def test_fit_rbf_binary_early_stopping(): clf = DualSVC(loss="l1", kernel="rbf", gamma=0.5, random_state=0, shrinking=True, selection="loss", termination="n_sv", sv_upper_bound=30) clf.fit(bin_dense, bin_target) y_pred = clf.predict(bin_dense) assert_equal(clf.dual_coef_.shape[1], 30)
def test_fit_rbf_binary(): for shrinking in (True, False): for selection in ("loss", "permute", "active"): for loss in ("l1", "l2"): clf = DualSVC(loss=loss, kernel="rbf", gamma=0.1, random_state=0, shrinking=shrinking, selection=selection) clf.fit(bin_dense, bin_target) y_pred = clf.predict(bin_dense) assert_equal(np.mean(y_pred == bin_target), 1.0)
def test_fit_rbf_multi(): clf = DualSVC(kernel="rbf", gamma=0.1, random_state=0) clf.fit(mult_dense, mult_target) y_pred = clf.predict(mult_dense) acc = np.mean(y_pred == mult_target) assert_almost_equal(acc, 1.0)