def test_l1l2_multi_task_log_loss(): clf = CDClassifier(penalty="l1/l2", loss="log", multiclass=False, max_steps=30, max_iter=20, C=5.0, random_state=0) clf.fit(mult_dense, mult_target) assert_almost_equal(clf.score(mult_dense, mult_target), 0.8633, 3)
def test_debiasing_l1(): for warm_debiasing in (True, False): clf = CDClassifier(penalty="l1", debiasing=True, warm_debiasing=warm_debiasing, C=0.05, Cd=1.0, max_iter=10, random_state=0) clf.fit(bin_dense, bin_target) assert_equal(clf.n_nonzero(), 22) assert_almost_equal(clf.score(bin_dense, bin_target), 0.955, 3)
def test_fit_linear_binary_l2r_modified_huber(): clf = CDClassifier(C=1.0, random_state=0, penalty="l2", loss="modified_huber") clf.fit(bin_dense, bin_target) acc = clf.score(bin_dense, bin_target) assert_almost_equal(acc, 1.0)
def test_l1r_shrinking(): for shrinking in (True, False): clf = CDClassifier(C=0.5, penalty="l1", random_state=0, shrinking=shrinking) clf.fit(bin_dense, bin_target) assert_equal(clf.score(bin_dense, bin_target), 1.0)
def test_fit_linear_binary_l2r_log(): clf = CDClassifier(C=1.0, random_state=0, penalty="l2", loss="log", max_iter=5) clf.fit(bin_dense, bin_target) acc = clf.score(bin_dense, bin_target) assert_almost_equal(acc, 1.0)
def test_l1l2_multiclass_log_loss_no_linesearch(): data = mult_csc clf = CDClassifier(penalty="l1/l2", loss="log", multiclass=True, selection="uniform", max_steps=0, max_iter=30, C=1.0, random_state=0) clf.fit(data, mult_target) assert_almost_equal(clf.score(data, mult_target), 0.88, 3) nz = np.sum(clf.coef_ != 0) assert_equal(nz, 297)
def test_fit_linear_binary_l1r_no_linesearch(): clf = CDClassifier(C=1.0, selection="uniform", max_steps=0, random_state=0, penalty="l1") clf.fit(bin_dense, bin_target) acc = clf.score(bin_dense, bin_target) assert_almost_equal(acc, 1.0)
def test_fit_squared_loss(): clf = CDClassifier(C=1.0, random_state=0, penalty="l2", loss="squared", max_iter=100) clf.fit(bin_dense, bin_target) assert_almost_equal(clf.score(bin_dense, bin_target), 0.99) y = bin_target.copy() y[y == 0] = -1 assert_array_almost_equal(np.dot(bin_dense, clf.coef_.ravel()) - y, clf.errors_.ravel())
def test_l1l2_multi_task_square_loss(): clf = CDClassifier(penalty="l1/l2", loss="squared", multiclass=False, max_iter=20, C=5.0, random_state=0) clf.fit(mult_dense, mult_target) assert_almost_equal(clf.score(mult_dense, mult_target), 0.8066, 3)
def test_debiasing_l1l2(): for warm_debiasing in (True, False): clf = CDClassifier(penalty="l1/l2", loss="squared_hinge", multiclass=False, debiasing=True, warm_debiasing=warm_debiasing, max_iter=20, C=0.01, random_state=0) clf.fit(mult_csc, mult_target) assert_greater(clf.score(mult_csc, mult_target), 0.75) assert_equal(clf.n_nonzero(percentage=True), 0.08)
def test_warm_start_l2r(): clf = CDClassifier(warm_start=True, random_state=0, penalty="l2") clf.C = 0.1 clf.fit(bin_dense, bin_target) assert_almost_equal(clf.score(bin_dense, bin_target), 1.0) clf.C = 0.2 clf.fit(bin_dense, bin_target) assert_almost_equal(clf.score(bin_dense, bin_target), 1.0)
def test_fit_squared_loss_l1(): clf = CDClassifier(C=0.5, random_state=0, penalty="l1", loss="squared", max_iter=100, shrinking=False) clf.fit(bin_dense, bin_target) assert_almost_equal(clf.score(bin_dense, bin_target), 0.985, 3) y = bin_target.copy() y[y == 0] = -1 assert_array_almost_equal(np.dot(bin_dense, clf.coef_.ravel()) - y, clf.errors_.ravel()) n_nz = clf.n_nonzero() assert_equal(n_nz, 89)
def test_empty_model(): clf = CDClassifier(C=1e-5, penalty="l1") clf.fit(bin_dense, bin_target) assert_equal(clf.n_nonzero(), 0) acc = clf.score(bin_dense, bin_target) assert_equal(acc, 0.5) clf = CDClassifier(C=1e-5, penalty="l1", debiasing=True) clf.fit(bin_dense, bin_target) assert_equal(clf.n_nonzero(), 0) acc = clf.score(bin_dense, bin_target) assert_equal(acc, 0.5)
def test_fit_squared_loss(): clf = CDClassifier(C=1.0, random_state=0, penalty="l2", loss="squared", max_iter=100) clf.fit(bin_dense, bin_target) assert_almost_equal(clf.score(bin_dense, bin_target), 0.99) y = bin_target.copy() y[y == 0] = -1 assert_array_almost_equal( np.dot(bin_dense, clf.coef_.ravel()) - y, clf.errors_.ravel())
def test_warm_start_l1r(): clf = CDClassifier(warm_start=True, random_state=0, penalty="l1") clf.C = 0.1 clf.fit(bin_dense, bin_target) n_nz = clf.n_nonzero() clf.C = 0.2 clf.fit(bin_dense, bin_target) n_nz2 = clf.n_nonzero() assert_true(n_nz < n_nz2)
def test_l1l2_multi_task_squared_hinge_loss(): Y = LabelBinarizer(neg_label=-1).fit_transform(mult_target) clf = CDClassifier(penalty="l1/l2", loss="squared_hinge", multiclass=False, max_iter=20, C=5.0, random_state=0) clf.fit(mult_dense, mult_target) df = clf.decision_function(mult_dense) assert_array_almost_equal(clf.errors_.T, 1 - Y * df) assert_almost_equal(clf.score(mult_dense, mult_target), 0.8633, 3) nz = np.sum(clf.coef_ != 0) assert_equal(nz, 300) clf = CDClassifier(penalty="l1/l2", loss="squared_hinge", multiclass=False, max_iter=20, C=0.05, random_state=0) clf.fit(mult_dense, mult_target) assert_almost_equal(clf.score(mult_dense, mult_target), 0.8266, 3) nz = np.sum(clf.coef_ != 0) assert_equal(nz, 231)
def test_l1l2_multiclass_log_loss(): for data in (mult_dense, mult_csc): clf = CDClassifier(penalty="l1/l2", loss="log", multiclass=True, max_steps=30, max_iter=5, C=1.0, random_state=0) clf.fit(data, mult_target) assert_almost_equal(clf.score(data, mult_target), 0.8766, 3) df = clf.decision_function(data) sel = np.array([df[i, int(mult_target[i])] for i in xrange(df.shape[0])]) df -= sel[:, np.newaxis] df = np.exp(df) assert_array_almost_equal(clf.errors_, df.T) for i in xrange(data.shape[0]): assert_almost_equal(clf.errors_[mult_target[i], i], 1.0) nz = np.sum(clf.coef_ != 0) assert_equal(nz, 297) clf = CDClassifier(penalty="l1/l2", loss="log", multiclass=True, max_steps=30, max_iter=5, C=0.3, random_state=0) clf.fit(data, mult_target) assert_almost_equal(clf.score(data, mult_target), 0.8566, 3) nz = np.sum(clf.coef_ != 0) assert_equal(nz, 213) assert_true(nz % 3 == 0) # should be a multiple of n_classes
def test_l1l2_multiclass_squared_hinge_loss_no_linesearch(): data = mult_csc clf = CDClassifier(penalty="l1/l2", loss="squared_hinge", multiclass=True, shrinking=False, selection="uniform", max_steps=0, max_iter=200, C=1.0, random_state=0) clf.fit(data, mult_target) assert_almost_equal(clf.score(data, mult_target), 0.9166, 3) df = clf.decision_function(data) n_samples, n_vectors = df.shape diff = np.zeros_like(clf.errors_) for i in xrange(n_samples): for k in xrange(n_vectors): diff[k, i] = 1 - (df[i, mult_target[i]] - df[i, k]) assert_array_almost_equal(clf.errors_, diff) assert_equal(np.sum(clf.coef_ != 0), 300) clf = CDClassifier(penalty="l1/l2", loss="squared_hinge", multiclass=True, max_iter=20, C=0.05, random_state=0) clf.fit(data, mult_target) assert_almost_equal(clf.score(data, mult_target), 0.83, 3) nz = np.sum(clf.coef_ != 0) assert_equal(nz, 207) assert_true(nz % 3 == 0) # should be a multiple of n_classes
def test_fit_squared_loss_l1(): clf = CDClassifier(C=0.5, random_state=0, penalty="l1", loss="squared", max_iter=100, shrinking=False) clf.fit(bin_dense, bin_target) assert_almost_equal(clf.score(bin_dense, bin_target), 0.985, 3) y = bin_target.copy() y[y == 0] = -1 assert_array_almost_equal( np.dot(bin_dense, clf.coef_.ravel()) - y, clf.errors_.ravel()) n_nz = clf.n_nonzero() assert_equal(n_nz, 89)
def test_fit_linear_binary_l1r(): clf = CDClassifier(C=1.0, random_state=0, penalty="l1") clf.fit(bin_dense, bin_target) acc = clf.score(bin_dense, bin_target) assert_almost_equal(acc, 1.0) n_nz = clf.n_nonzero() perc = clf.n_nonzero(percentage=True) assert_equal(perc, float(n_nz) / bin_dense.shape[1]) clf = CDClassifier(C=0.1, random_state=0, penalty="l1") clf.fit(bin_dense, bin_target) acc = clf.score(bin_dense, bin_target) assert_almost_equal(acc, 0.97) n_nz2 = clf.n_nonzero() perc2 = clf.n_nonzero(percentage=True) assert_equal(perc2, float(n_nz2) / bin_dense.shape[1]) assert_true(n_nz > n_nz2)
def test_fit_linear_binary_l1r_log_loss_no_linesearch(): clf = CDClassifier(C=1.0, max_steps=0, random_state=0, selection="uniform", penalty="l1", loss="log") clf.fit(bin_dense, bin_target) acc = clf.score(bin_dense, bin_target) assert_almost_equal(acc, 0.995)
def test_l1l2_multiclass_log_loss(): for data in (mult_dense, mult_csc): clf = CDClassifier(penalty="l1/l2", loss="log", multiclass=True, max_steps=30, max_iter=5, C=1.0, random_state=0) clf.fit(data, mult_target) assert_almost_equal(clf.score(data, mult_target), 0.8766, 3) df = clf.decision_function(data) sel = np.array( [df[i, int(mult_target[i])] for i in xrange(df.shape[0])]) df -= sel[:, np.newaxis] df = np.exp(df) assert_array_almost_equal(clf.errors_, df.T) for i in xrange(data.shape[0]): assert_almost_equal(clf.errors_[mult_target[i], i], 1.0) nz = np.sum(clf.coef_ != 0) assert_equal(nz, 297) clf = CDClassifier(penalty="l1/l2", loss="log", multiclass=True, max_steps=30, max_iter=5, C=0.3, random_state=0) clf.fit(data, mult_target) assert_almost_equal(clf.score(data, mult_target), 0.8566, 3) nz = np.sum(clf.coef_ != 0) assert_equal(nz, 213) assert_true(nz % 3 == 0) # should be a multiple of n_classes
def test_fit_linear_binary_l1r_log_loss(): clf = CDClassifier(C=1.0, random_state=0, penalty="l1", loss="log") clf.fit(bin_dense, bin_target) acc = clf.score(bin_dense, bin_target) assert_almost_equal(acc, 0.995)
def test_fit_linear_multi_l2r(): clf = CDClassifier(C=1.0, random_state=0, penalty="l2") clf.fit(mult_dense, mult_target) acc = clf.score(mult_dense, mult_target) assert_almost_equal(acc, 0.8833, 4)
def test_debiasing_warm_start(): clf = CDClassifier(penalty="l1", max_iter=10, warm_start=True, random_state=0) clf.C = 0.5 clf.fit(bin_dense, bin_target) assert_equal(clf.n_nonzero(), 74) assert_almost_equal(clf.score(bin_dense, bin_target), 1.0) clf.C = 1.0 clf.fit(bin_dense, bin_target) # FIXME: not the same sparsity as without warm start... assert_equal(clf.n_nonzero(), 77) assert_almost_equal(clf.score(bin_dense, bin_target), 1.0)
def test_fit_linear_binary_l2r(): clf = CDClassifier(C=1.0, random_state=0, penalty="l2") clf.fit(bin_dense, bin_target) acc = clf.score(bin_dense, bin_target) assert_almost_equal(acc, 1.0)
verbose=0) clf.fit(X, y) training_time = time.time() - s print "Numba" print training_time print clf.score(X, y) print clf.n_nonzero(percentage=True) print from lightning.primal_cd import CDClassifier clf = CDClassifier(C=1. / X.shape[0], alpha=1e-4, tol=1e-3, max_iter=20, multiclass=True, penalty="l1/l2", shrinking=False, max_steps=0, selection="uniform", verbose=0) s = time.time() clf.fit(X, y) training_time = time.time() - s print "Cython" print training_time print clf.score(X, y) print clf.n_nonzero(percentage=True) print