예제 #1
0
파일: mlp.py 프로젝트: quynhdtn/DL
def test_mlp(learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=1000,
             dataset='/Users/quynhdo/Downloads/mnist.pkl', batch_size=20, n_hidden=500):
    """
    Demonstrate stochastic gradient descent optimization for a multilayer
    perceptron

    This is demonstrated on MNIST.

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient

    :type L1_reg: float
    :param L1_reg: L1-norm's weight when added to the cost (see
    regularization)

    :type L2_reg: float
    :param L2_reg: L2-norm's weight when added to the cost (see
    regularization)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: the path of the MNIST dataset file from
                 http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz


   """
    datasets = load_data(dataset)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size
    n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print ('... building the model')

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    rng = numpy.random.RandomState(1234)

    # construct the MLP class
    classifier = MLP(
        rng=rng,
        input=x,
        n_in=28 * 28,
        n_hidden=n_hidden,
        n_out=10
    )

    # start-snippet-4
    # the cost we minimize during training is the negative log likelihood of
    # the model plus the regularization terms (L1 and L2); cost is expressed
    # here symbolically
    cost = (
        classifier.negative_log_likelihood(y)
        + L1_reg * classifier.L1
        + L2_reg * classifier.L2_sqr
    )
    # end-snippet-4

    # compiling a Theano function that computes the mistakes that are made
    # by the model on a minibatch
    test_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )

    validate_model = theano.function(
        inputs=[index],
        outputs=classifier.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        }
    )

    # start-snippet-5
    # compute the gradient of cost with respect to theta (sotred in params)
    # the resulting gradients will be stored in a list gparams
    gparams = [T.grad(cost, param) for param in classifier.params]

    # specify how to update the parameters of the model as a list of
    # (variable, update expression) pairs

    # given two lists of the same length, A = [a1, a2, a3, a4] and
    # B = [b1, b2, b3, b4], zip generates a list C of same size, where each
    # element is a pair formed from the two lists :
    #    C = [(a1, b1), (a2, b2), (a3, b3), (a4, b4)]
    updates = [
        (param, param - learning_rate * gparam)
        for param, gparam in zip(classifier.params, gparams)
    ]

    # compiling a Theano function `train_model` that returns the cost, but
    # in the same time updates the parameter of the model based on the rules
    # defined in `updates`
    train_model = theano.function(
        inputs=[index],
        outputs=cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]
        }
    )
    # end-snippet-5

    ###############
    # TRAIN MODEL #
    ###############
    print ('... training')

    # early-stopping parameters
    patience = 10000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
                           # found
    improvement_threshold = 0.995  # a relative improvement of this much is
                                   # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
                                  # go through this many
                                  # minibatche before checking the network
                                  # on the validation set; in this case we
                                  # check every epoch

    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = timeit.default_timer()

    epoch = 0
    done_looping = False

    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in range(int(n_train_batches)):

            minibatch_avg_cost = train_model(minibatch_index)
            # iteration number
            iter = (epoch - 1) * n_train_batches + minibatch_index

            if (iter + 1) % validation_frequency == 0:
                # compute zero-one loss on validation set
                validation_losses = [validate_model(i) for i
                                     in range(int(n_valid_batches))]
                this_validation_loss = numpy.mean(validation_losses)

                print(
                    'epoch %i, minibatch %i/%i, validation error %f %%' %
                    (
                        epoch,
                        minibatch_index + 1,
                        n_train_batches,
                        this_validation_loss * 100.
                    )
                )

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:
                    #improve patience if loss improvement is good enough
                    if (
                        this_validation_loss < best_validation_loss *
                        improvement_threshold
                    ):
                        patience = max(patience, iter * patience_increase)

                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = [test_model(i) for i
                                   in range(int(n_test_batches))]
                    test_score = numpy.mean(test_losses)

                    print(('     epoch %i, minibatch %i/%i, test error of '
                           'best model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.))

            if patience <= iter:
                done_looping = True
                break

    end_time = timeit.default_timer()
    print(('Optimization complete. Best validation score of %f %% '
           'obtained at iteration %i, with test performance %f %%') %
          (best_validation_loss * 100., best_iter + 1, test_score * 100.))
    print >> sys.stderr, ('The code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.))
예제 #2
0
파일: SdA.py 프로젝트: quynhdtn/DL
def test_SdA(finetune_lr=0.1, pretraining_epochs=1,
             pretrain_lr=0.01, training_epochs=1000,
             dataset='/Users/quynhdo/Downloads/mnist.pkl', batch_size=20):
    """
    Demonstrates how to train and test a stochastic denoising autoencoder.

    This is demonstrated on MNIST.

    :type learning_rate: float
    :param learning_rate: learning rate used in the finetune stage
    (factor for the stochastic gradient)

    :type pretraining_epochs: int
    :param pretraining_epochs: number of epoch to do pretraining

    :type pretrain_lr: float
    :param pretrain_lr: learning rate to be used during pre-training

    :type n_iter: int
    :param n_iter: maximal number of iterations ot run the optimizer

    :type dataset: string
    :param dataset: path the the pickled dataset

    """

    datasets = load_data(dataset)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_train_batches /= batch_size

    # numpy random generator
    # start-snippet-3
    numpy_rng = numpy.random.RandomState(89677)
    print ('... building the model')
    # construct the stacked denoising autoencoder class
    sda = SdA(
        numpy_rng=numpy_rng,
        n_ins=28 * 28,
        hidden_layers_sizes=[1000, 1000, 1000],
        n_outs=10
    )
    # end-snippet-3 start-snippet-4
    #########################
    # PRETRAINING THE MODEL #
    #########################
    print ('... getting the pretraining functions')
    pretraining_fns = sda.pretraining_functions(train_set_x=train_set_x,
                                                batch_size=batch_size)

    print ('... pre-training the model')
    start_time = timeit.default_timer()
    ## Pre-train layer-wise
    corruption_levels = [.1, .2, .3]
    for i in range(sda.n_layers):
        # go through pretraining epochs
        for epoch in range(pretraining_epochs):
            # go through the training set
            c = []
            for batch_index in range(int(n_train_batches)):
                c.append(pretraining_fns[i](index=batch_index,
                         corruption=corruption_levels[i],
                         lr=pretrain_lr))
            print ('Pre-training layer %i, epoch %d, cost ' % (i, epoch)),
            print (numpy.mean(c))

    end_time = timeit.default_timer()

    print ( ('The pretraining code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.)))
    # end-snippet-4
    ########################
    # FINETUNING THE MODEL #
    ########################

    # get the training, validation and testing function for the model
    print ('... getting the finetuning functions')
    train_fn, validate_model, test_model = sda.build_finetune_functions(
        datasets=datasets,
        batch_size=batch_size,
        learning_rate=finetune_lr
    )

    print ('... finetunning the model')
    # early-stopping parameters
    patience = 10 * n_train_batches  # look as this many examples regardless
    patience_increase = 2.  # wait this much longer when a new best is
                            # found
    improvement_threshold = 0.995  # a relative improvement of this much is
                                   # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
                                  # go through this many
                                  # minibatche before checking the network
                                  # on the validation set; in this case we
                                  # check every epoch

    best_validation_loss = numpy.inf
    test_score = 0.
    start_time = timeit.default_timer()

    done_looping = False
    epoch = 0

    while (epoch < training_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in range(int(n_train_batches)):
            minibatch_avg_cost = train_fn(minibatch_index)
            iter = (epoch - 1) * n_train_batches + minibatch_index

            if (iter + 1) % validation_frequency == 0:
                validation_losses = validate_model()
                this_validation_loss = numpy.mean(validation_losses)
                print('epoch %i, minibatch %i/%i, validation error %f %%' %
                      (epoch, minibatch_index + 1, n_train_batches,
                       this_validation_loss * 100.))

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:

                    #improve patience if loss improvement is good enough
                    if (
                        this_validation_loss < best_validation_loss *
                        improvement_threshold
                    ):
                        patience = max(patience, iter * patience_increase)

                    # save best validation score and iteration number
                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = test_model()
                    test_score = numpy.mean(test_losses)
                    print(('     epoch %i, minibatch %i/%i, test error of '
                           'best model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.))

            if patience <= iter:
                done_looping = True
                break

    end_time = timeit.default_timer()
    print(
        (
            'Optimization complete with best validation score of %f %%, '
            'on iteration %i, '
            'with test performance %f %%'
        )
        % (best_validation_loss * 100., best_iter + 1, test_score * 100.)
    )
    print (('The training code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.)))
예제 #3
0
        for i in range(len(self.dAs)):
            self.mlp.params.remove(self.mlp.connections[i].W)
            self.mlp.params.remove(self.mlp.connections[i].b)
            self.mlp.connections[i].W = self.dAs[i].connections[0].W
            self.mlp.connections[i].b = self.dAs[i].connections[0].b
            self.mlp.params.append(self.mlp.connections[i].W)
            self.mlp.params.append(self.mlp.connections[i].b)

        print("Finish pre-training!")

    def fit( self, train_data, train_data_label, batch_size, training_epochs, learning_rate):
        self.mlp.fit(train_data, train_data_label, batch_size, training_epochs, learning_rate)

    '''
dataset='/Users/quynhdo/Downloads/mnist.pkl'
datasets = load_data(dataset)
train_set_x, train_set_y = datasets[0]

test_set_x, test_set_y = datasets[1]



sda= StackDenoisingAutoEncoderEx(28*28-2,numHiddens=[1000, 1000, 1000],numOutput=10, numExtend=2, corruption_level=[0.1,0.2,0.3])
sda.preTraining(th.shared(train_set_x.eval()[:,0:28*28-2]), 20, 2,0.01)

sda.mlp.fit(th.shared(train_set_x.eval()[:,0:28*28-2]),th.shared(train_set_x.eval()[:,28*28-2:28*28]), train_set_y, 20,1,0.1)

y_pred = sda.mlp.predict(test_set_x.eval()[:,0:28*28-2], test_set_x.eval()[:,28*28-2:28*28])
print(y_pred)
#print (test_set_y)
from sklearn import metrics
예제 #4
0
파일: dA.py 프로젝트: quynhdtn/DL
def test_dA(learning_rate=0.1, training_epochs=5,
            dataset='/Users/quynhdo/Downloads/mnist.pkl',
            batch_size=20, output_folder='dA_plots'):

    """
    This demo is tested on MNIST

    :type learning_rate: float
    :param learning_rate: learning rate used for training the DeNosing
                          AutoEncoder

    :type training_epochs: int
    :param training_epochs: number of epochs used for training

    :type dataset: string
    :param dataset: path to the picked dataset

    """
    datasets = load_data(dataset)
    train_set_x, train_set_y = datasets[0]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size

    # start-snippet-2
    # allocate symbolic variables for the data
    index = T.lscalar()    # index to a [mini]batch
    x = T.matrix('x')  # the data is presented as rasterized images
    # end-snippet-2

    if not os.path.isdir(output_folder):
        os.makedirs(output_folder)
    os.chdir(output_folder)

    ####################################
    # BUILDING THE MODEL NO CORRUPTION #
    ####################################

    rng = numpy.random.RandomState(123)
    theano_rng = RandomStreams(rng.randint(2 ** 30))

    da = dA(
        numpy_rng=rng,
        theano_rng=theano_rng,
        input=x,
        n_visible=28 * 28,
        n_hidden=500
    )

    cost, updates = da.get_cost_updates(
        corruption_level=0.,
        learning_rate=learning_rate
    )

    train_da = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size]
        }
    )

    start_time = timeit.default_timer()

    ############
    # TRAINING #
    ############

    # go through training epochs
    for epoch in range(training_epochs):
        # go through trainng set
        c = []
        for batch_index in range(int(n_train_batches)):
            c.append(train_da(batch_index))

        print ('Training epoch %d, cost ' % epoch, numpy.mean(c))

    end_time = timeit.default_timer()

    training_time = (end_time - start_time)

    print (('The no corruption code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((training_time) / 60.)))
    image = Image.fromarray(
        tile_raster_images(X=da.W.get_value(borrow=True).T,
                           img_shape=(28, 28), tile_shape=(10, 10),
                           tile_spacing=(1, 1)))
    image.save('filters_corruption_0.png')

    # start-snippet-3
    #####################################
    # BUILDING THE MODEL CORRUPTION 30% #
    #####################################

    rng = numpy.random.RandomState(123)
    theano_rng = RandomStreams(rng.randint(2 ** 30))

    da = dA(
        numpy_rng=rng,
        theano_rng=theano_rng,
        input=x,
        n_visible=28 * 28,
        n_hidden=500
    )

    cost, updates = da.get_cost_updates(
        corruption_level=0.3,
        learning_rate=learning_rate
    )

    train_da = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size]
        }
    )

    start_time = timeit.default_timer()

    ############
    # TRAINING #
    ############

    # go through training epochs
    for epoch in range(training_epochs):
        # go through trainng set
        c = []
        for batch_index in range(int(n_train_batches)):
            c.append(train_da(batch_index))

        print ('Training epoch %d, cost ' % epoch, numpy.mean(c))

    end_time = timeit.default_timer()

    training_time = (end_time - start_time)

    print ( ('The 30% corruption code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % (training_time / 60.)))
    # end-snippet-3

    # start-snippet-4
    image = Image.fromarray(tile_raster_images(
        X=da.W.get_value(borrow=True).T,
        img_shape=(28, 28), tile_shape=(10, 10),
        tile_spacing=(1, 1)))
    image.save('filters_corruption_30.png')
    # end-snippet-4

    os.chdir('../')