예제 #1
0
def pipeline_dli(filename, output_file, keywords, verbose=False):
    import numpy as np
    import linear_operators as lo
    import tamasis as tm
    # verbosity
    tm.var.verbose = verbose
    # define observation
    obs = tm.PacsObservation(filename, **keywords["PacsObservation"])
    # extra masking
    tm.step_scanline_masking(obs, **keywords["scanline_masking"])
    # get data
    tod = obs.get_tod(**keywords["get_tod"])
    # deglitching
    tm.step_deglitching(obs, tod, **keywords["deglitching"])
    # median filtering
    tod = tm.filter_median(tod, **keywords["filter_median"])
    # define projector
    projection = obs.get_projection_operator(**keywords["Projection"])
    # build instrument model
    response = tm.ResponseTruncatedExponentialOperator(
        obs.pack(obs.instrument.detector.time_constant) /
        obs.instrument.SAMPLING_PERIOD)
    compression = tm.CompressionAverageOperator(obs.slice.compression_factor)
    masking = tm.MaskOperator(tod.mask)
    model = masking * compression * response * projection
    # set tod masked values to zero
    tod = masking(tod)
    # N^-1 operator
    invntt = tm.InvNttOperator(obs)

    # for the dli algorithm
    M = map_mask(tod, model, **keywords["map_mask"])

    # recast model as a new-style LinearOperator from linear_operators package
    H = lo.aslinearoperator(model) * M.T
    N = lo.aslinearoperator(invntt)
    # vectorize data so it is accepted by LinearOperators
    y = tod.ravel()
    Ds = [tm.DiscreteDifferenceOperator(axis=i, shapein=projection.shapein) \
          for i in (0, 1)]
    Ds = [lo.aslinearoperator(D) for D in Ds]
    Ds = [D * M.T for D in Ds]
    D = lo.concatenate(Ds)
    # handle tau which needs to be an ndarray
    keywords["dli"]["tau"] *= np.ones(D.shape[0])
    algo = lo.DoubleLoopAlgorithm(H,
                                  y,
                                  D,
                                  noise_covariance=N,
                                  fmin_args=keywords["fmin_args"],
                                  lanczos=keywords["lanczos"],
                                  **keywords["dli"])
    # optimize
    xe = algo()
    # reshape
    xe = (M.T * xe).reshape(projection.shapein)
    # recast as tamasis map
    xe = tm.Map(xe)
    # save
    xe.save(output_file)
예제 #2
0
def pipeline_dli(filename, output_file, keywords, verbose=False):
    import numpy as np
    import linear_operators as lo
    import tamasis as tm
    # verbosity
    tm.var.verbose = verbose
    # define observation
    obs = tm.PacsObservation(filename, **keywords["PacsObservation"])
    # extra masking
    tm.step_scanline_masking(obs, **keywords["scanline_masking"])
    # get data
    tod = obs.get_tod(**keywords["get_tod"])
    # deglitching
    tm.step_deglitching(obs, tod, **keywords["deglitching"])
    # median filtering
    tod = tm.filter_median(tod, **keywords["filter_median"])
    # define projector
    projection = obs.get_projection_operator(**keywords["Projection"])
    # build instrument model
    response = tm.ResponseTruncatedExponentialOperator(obs.pack(
                   obs.instrument.detector.time_constant) / 
                   obs.instrument.SAMPLING_PERIOD)
    compression = tm.CompressionAverageOperator(obs.slice.compression_factor)
    masking = tm.MaskOperator(tod.mask)
    model = masking * compression * response * projection
    # set tod masked values to zero
    tod = masking(tod)
    # N^-1 operator
    invntt = tm.InvNttOperator(obs)

    # for the dli algorithm
    M = map_mask(tod, model, **keywords["map_mask"])

    # recast model as a new-style LinearOperator from linear_operators package
    H = lo.aslinearoperator(model) * M.T
    N = lo.aslinearoperator(invntt)
    # vectorize data so it is accepted by LinearOperators
    y = tod.ravel()
    Ds = [tm.DiscreteDifferenceOperator(axis=i, shapein=projection.shapein) \
          for i in (0, 1)]
    Ds = [lo.aslinearoperator(D) for D in Ds]
    Ds = [D * M.T for D in Ds]
    D = lo.concatenate(Ds)
    # handle tau which needs to be an ndarray
    keywords["dli"]["tau"] *= np.ones(D.shape[0])
    algo = lo.DoubleLoopAlgorithm(H, y, D, noise_covariance=N,
                                  fmin_args=keywords["fmin_args"],
                                  lanczos=keywords["lanczos"],
                                  **keywords["dli"])
    # optimize
    xe = algo()
    # reshape
    xe = (M.T * xe).reshape(projection.shapein)
    # recast as tamasis map
    xe = tm.Map(xe)
    # save
    xe.save(output_file)
예제 #3
0
파일: planning.py 프로젝트: pombredanne/csh
def generate_model(ra0, dec0, pointing_params, repeats=1, cross_scan=False,
                       span_angles=False, band="red", map_header=None, npixels_per_sample=0):
    """
    Generate a PACS projector.
    """
    pointing1 = tm.pacs_create_scan(ra0, dec0, **pointing_params)
    # create obs object
    obs1 = tm.PacsSimulation(pointing1, band)
    if map_header is None:
        map_header = obs1.get_map_header()        
    # create projector
    projection1 = tm.Projection(obs1, header=map_header,
                                npixels_per_sample=npixels_per_sample)
    P = lo.aslinearoperator(projection1)
    # cross scan
    if cross_scan:
        pointing_params["scan_angle"] += 90.
        pointing2 = tm.pacs_create_scan(ra0, dec0, **pointing_params)
        obs2 = tm.PacsSimulation(pointing2, band)
        projection2 = tm.Projection(obs2, header=map_header,
                                    npixels_per_sample=npixels_per_sample)
        P2 = lo.aslinearoperator(projection2)
        P = lo.concatenate((P, P2))
    # repeats
    if repeats > 1:
        P = lo.concatenate((P, ) * repeats)
    if span_angles:
        if cross_scan:
            raise ValueError("Span_angles and cross_scan are incompatible.")
        # equally spaced but exclude 0 and 90
        angles = np.linspace(0, 90, repeats + 2)[1:-1]
        for a in angles:
            pointing_params["scan_angle"] = a
            pointing2 = tm.pacs_create_scan(ra0, dec0, **pointing_params)
            obs2 = tm.PacsSimulation(pointing2, band)
            projection2 = tm.Projection(obs2, header=map_header,
                                        npixels_per_sample=npixels_per_sample)
            P2 = lo.aslinearoperator(projection2)
            P = lo.concatenate((P, P2))
    # noise
    N = generate_noise_filter(obs1, P, band)
    # covered area
    map_shape = map_header['NAXIS2'], map_header['NAXIS1']
    coverage = (P.T * np.ones(P.shape[0])).reshape(map_shape)
    seen = coverage != 0
    M = lo.decimate(coverage < 10)
    # global model
    H = N * P * M.T
    return H
예제 #4
0
 def __call__(self, data, state):
     mymap = state.get('map')
     model = state['model']
     M = lo.aslinearoperator(model.aslinearoperator())
     data = data.ravel()
     mymap = np.ravel(mymap)
     state['lo_data_shape'] = model.shapeout
     state['map_shape'] = model.shapein
     state['model'] = M
     state['data'] = data
     state['map'] = mymap
     return data
예제 #5
0
파일: planning.py 프로젝트: pombredanne/csh
def generate_noise_filter(obs1, P, band):
    # data
    if band == "red":
        shape0 = 512.
    if band == "green" or band == "blue":
        shape0 = 2048.
    nsamples = P.shape[0] / shape0
    # 1/f noise model
    length = 2 ** np.ceil(np.log2(np.array(nsamples)))
    # square root in Fourier !!!
    filt = obs1.get_filter_uncorrelated()
    fft0 = lo.fft2(filt.shape, axes=(1,))
    filt2 = np.real(fft0.T(np.sqrt(fft0(filt))))
    invNtt = tm.InvNtt(length, filt2)
    fft = tm.FftHalfComplex(length)
    padding = tm.Padding(left=invNtt.ncorrelations,
                         right=length - nsamples - invNtt.ncorrelations)
    cov = padding.T * fft.T * invNtt * fft * padding
    N12 = lo.aslinearoperator(cov)
    return N12
예제 #6
0
파일: pacs_huber.py 프로젝트: nbarbey/csh
def pipeline_huber(filenames, output_file, keywords, verbose=False):
    """
    Perform huber regularized inversion of state of the art
    PACS model.  The PACS model includes tod mask, compression,
    response, projection and noise covariance (invntt).
    Processing steps are as follows :
    
        - define PacsObservation instance
        - mask first scanlines to avoid drift
        - get Time Ordered Data (get_tod)
        - 2nd level deglitching (with standard projector and tod median
            filtering with a  narrow window)
        - median filtering
        - define projection
        - perform inversion on model
        - save file

    Arguments
    ---------
    filenames: list of strings
        List of data filenames.
    output_file : string
        Name of the output fits file.
    keywords: dict
        Dictionary containing options for all steps as dictionary.
    verbose: boolean (default False)
        Set verbosity.

    Returns
    -------
    Returns nothing. Save result as a fits file.
    """
    from scipy.sparse.linalg import cgs
    import tamasis as tm
    import linear_operators as lo

    # verbosity
    # define observation
    obs = tm.PacsObservation(filenames, **keywords["PacsObservation"])
    # extra masking
    tm.step_scanline_masking(obs, **keywords["scanline_masking"])
    # get data
    tod = obs.get_tod(**keywords["get_tod"])
    # deglitching
    # need to adapt degltiching to any compression model
    tm.step_deglitching(obs, tod, **keywords["deglitching"])
    # median filtering
    tod = tm.filter_median(tod, **keywords["filter_median"])
    # define projector
    projection = tm.Projection(obs, **keywords["Projection"])
    P = lo.aslinearoperator(projection)
    # build instrument model
    masking = tm.Masking(tod.mask)
    Mt = lo.aslinearoperator(masking)
    # compression
    mode = compressions[keywords["compression"].pop("mode")]
    factor = keywords["compression"].pop("factor")
    C = mode(data, factor, **keywords["compression"])
    # define map mask
    M = map_mask(tod, model, **keywords["map_mask"])
    # recast model as a new-style LinearOperator from linear_operators package
    H = Mt * C * P * M
    # vectorize data so it is accepted by LinearOperators
    y = tod.ravel()
    Ds = [tm.DiscreteDifference(axis=i, shapein=projection.shapein) for i in (0, 1)]
    Ds = [lo.aslinearoperator(D) for D in Ds]
    Ds = [D * M.T for D in Ds]
    # set tod masked values to zero
    tod = masking(tod)
    # perform map-making inversion
    hypers = (keywords["hacg"].pop("hyper"),) * len(Ds)
    deltas = (keywords["hacg"].pop("delta"),) * (len(Ds) + 1)
    map_huber = lo.hacg(H, tod.ravel(), priors=Ds, hypers=hypers, deltas=deltas, **keywords["hacg"])
    # save
    map_huber = (M.T * map_huber).reshape(projection.shapein)
    map_huber = tm.Map(map_huber)
    map_huber.save(output_file)
예제 #7
0
def pipeline_huber(filenames, output_file, keywords, verbose=False):
    """
    Perform huber regularized inversion of state of the art
    PACS model.  The PACS model includes tod mask, compression,
    response, projection and noise covariance (invntt).
    Processing steps are as follows :
    
        - define PacsObservation instance
        - mask first scanlines to avoid drift
        - get Time Ordered Data (get_tod)
        - 2nd level deglitching (with standard projector and tod median
            filtering with a  narrow window)
        - median filtering
        - define projection
        - perform inversion on model
        - save file

    Arguments
    ---------
    filenames: list of strings
        List of data filenames.
    output_file : string
        Name of the output fits file.
    keywords: dict
        Dictionary containing options for all steps as dictionary.
    verbose: boolean (default False)
        Set verbosity.

    Returns
    -------
    Returns nothing. Save result as a fits file.
    """
    from scipy.sparse.linalg import cgs
    import tamasis as tm
    import linear_operators as lo
    # verbosity
    # define observation
    obs = tm.PacsObservation(filenames, **keywords["PacsObservation"])
    # extra masking
    tm.step_scanline_masking(obs, **keywords["scanline_masking"])
    # get data
    tod = obs.get_tod(**keywords["get_tod"])
    # deglitching
    # need to adapt degltiching to any compression model
    tm.step_deglitching(obs, tod, **keywords["deglitching"])
    # median filtering
    tod = tm.filter_median(tod, **keywords["filter_median"])
    # define projector
    projection = tm.Projection(obs, **keywords["Projection"])
    P = lo.aslinearoperator(projection)
    # build instrument model
    masking = tm.Masking(tod.mask)
    Mt = lo.aslinearoperator(masking)
    # compression
    mode = compressions[keywords["compression"].pop("mode")]
    factor = keywords["compression"].pop("factor")
    C = mode(data, factor, **keywords["compression"])
    # define map mask
    M = map_mask(tod, model, **keywords["map_mask"])
    # recast model as a new-style LinearOperator from linear_operators package
    H = Mt * C * P * M
    # vectorize data so it is accepted by LinearOperators
    y = tod.ravel()
    Ds = [
        tm.DiscreteDifference(axis=i, shapein=projection.shapein)
        for i in (0, 1)
    ]
    Ds = [lo.aslinearoperator(D) for D in Ds]
    Ds = [D * M.T for D in Ds]
    # set tod masked values to zero
    tod = masking(tod)
    # perform map-making inversion
    hypers = (keywords["hacg"].pop("hyper"), ) * len(Ds)
    deltas = (keywords["hacg"].pop("delta"), ) * (len(Ds) + 1)
    map_huber = lo.hacg(H,
                        tod.ravel(),
                        priors=Ds,
                        hypers=hypers,
                        deltas=deltas,
                        **keywords["hacg"])
    # save
    map_huber = (M.T * map_huber).reshape(projection.shapein)
    map_huber = tm.Map(map_huber)
    map_huber.save(output_file)
예제 #8
0
 def __call__(self, data, state):
     obs = state['obs']
     cov = noise_covariance(data, obs)
     W = lo.aslinearoperator(cov.aslinearoperator())
     state['noise_model'] = W
     return data
예제 #9
0
#!/usr/bin/env python

"""
Testing of the lo package
"""

import nose
from numpy.testing import *
import numpy as np
import linear_operators as lo

# collection of linear operators to test
mat16 = lo.aslinearoperator(np.random.rand(16, 16))
lo_list = [mat16, ]

# collection of vectors
ones16 = np.ones(16)

v_list = [ones16, ]

def check_matvec(A, x):
    A * x

def test_matvec():
    for A in lo_list:
        for x in v_list:
            yield check_matvec, A, x

if __name__ == "__main__":
    nose.run(argv=['', __file__])
예제 #10
0
 def __init__(self, mat):
     self.mat = lo.aslinearoperator(mat)
예제 #11
0
#!/usr/bin/env python
"""
Testing of the lo.iterative module
"""

import nose
from numpy.testing import *
import numpy as np
import linear_operators as lo
from linear_operators import iterative

# collection of linear operators to test
mat16 = lo.aslinearoperator(np.random.rand(16, 16))
id16 = lo.identity((16, 16))
diag16 = lo.diag(np.random.rand(16))
conv16 = lo.convolve(16, np.random.rand(4), mode="same")
lo_list = [mat16, id16, diag16, conv16]

# collection of vectors
ones16 = np.ones(16)
zeros16 = np.zeros(16)
rand16 = np.random.rand(16)

v_list = [ones16, zeros16, rand16]

# collection of methods
methods = [
    iterative.acg,
]

예제 #12
0
 def __init__(self, mat):
     self.mat = lo.aslinearoperator(mat)