예제 #1
0
 def testCornerLoss(self):
     utils_3d = detection_3d_lib.Utils3D()
     gt_bboxes = tf.constant([[[[0., 0., 0., 1., 1., 1., 0.],
                                [0., 0., 0., 1., 1., 1., 0.],
                                [0., 0., 0., 1., 1., 1., 0.],
                                [0., 0., 0., 1., 1., 1., 0.],
                                [0., 0., 0., 1., 1., 1., 0.]]]])
     predicted_bboxes = tf.constant([[[
         [0., 0., 0., 1., 1., 1., 0.],  # Same as GT
         [0., 0., 0., 1., 1., 1., np.pi],  # Opposite heading
         [0., 0., 0., 1., 1., 1., np.pi / 2.],  # 90-deg rotation
         [1., 1., 1., 1., 1., 1., 0],  # Different center
         [0., 0., 0., 2., 2., 2., 0],  # Different size
     ]]])
     expected_loss = [[[
         0.,
         0.,
         8. * (1 - 0.5),
         8. * (np.sqrt(3.) - 0.5),
         8. * ((np.sqrt(0.5 * 0.5 * 3)**2) * 0.5),
     ]]]
     loss = utils_3d.CornerLoss(gt_bboxes, predicted_bboxes)
     with self.session() as sess:
         actual_loss = sess.run(loss)
         self.assertAllClose(actual_loss, expected_loss)
예제 #2
0
    def testResidualsToBBoxesNegPiToPi(self):
        utils_3d = detection_3d_lib.Utils3D()

        anchor_bboxes = tf.constant(
            [[1, 2, 3, 4, 3, 6, 0.2], [1, 2, 3, 4, 3, 6, -0.2]],
            dtype=tf.float32)
        expected_predicted_bboxes = np.asarray(
            [[2, 22, 303, 4, 9, 12, -np.pi + 0.2],
             [2, 22, 303, 4, 9, 12, np.pi - 0.2]])

        residuals = tf.constant([[
            1. / 5, 20. / 5, 300. / 6, 0.,
            np.log(9. / 3.),
            np.log(12. / 6.), np.pi
        ],
                                 [
                                     1. / 5, 20. / 5, 300. / 6, 0.,
                                     np.log(9. / 3.),
                                     np.log(12. / 6.), -np.pi
                                 ]],
                                dtype=tf.float32)  # pyformat: disable
        predicted_bboxes = utils_3d.ResidualsToBBoxes(anchor_bboxes,
                                                      residuals,
                                                      min_angle_rad=-np.pi,
                                                      max_angle_rad=np.pi)

        with self.session() as sess:
            actual_predicted_bboxes = sess.run(predicted_bboxes)
            self.assertAllClose(actual_predicted_bboxes,
                                expected_predicted_bboxes)
예제 #3
0
    def testNMSIndices(self):
        utils_3d = detection_3d_lib.Utils3D()

        # Create three anchor boxes, two largely overlapping and one
        # not overlapping with either.
        #
        # Set a batch size of 1 and use the Batched version to test
        # both functions.
        anchor_bboxes = tf.constant(
            [[[1, 2, 3, 4, 3, 6, 0.], [1, 2, 2, 4, 3, 6, 0.],
              [10, 20, 30, 4, 3, 6, 0.]]],
            dtype=tf.float32)

        # Treat them all as high scores.
        scores = tf.constant([[0.7, 0.8, 0.6]])

        with self.session() as sess:
            nms_indices, valid_mask = utils_3d.BatchedNMSIndices(
                anchor_bboxes, scores)
            indices, mask = sess.run([nms_indices, valid_mask])
            # One box is filtered out.
            self.assertEqual(2, np.sum(mask))
            # The two boxes that remain are the second one (because of its higher
            # score) and the last one (which overlaps with nothing).
            self.assertAllEqual([[1, 2, 0]], indices)

            # Flip the scores; expect the first box to be chosen instead.
            # Change the last box's threshold to be 0.0, so that the
            # default setting for the score threshold filters it out too.
            scores_2 = tf.constant([[0.8, 0.7, 0.0]])
            nms_indices, valid_mask = utils_3d.BatchedNMSIndices(
                anchor_bboxes, scores_2)
            indices, mask = sess.run([nms_indices, valid_mask])
            self.assertEqual(1, np.sum(mask))
            self.assertAllEqual([[0, 0, 0]], indices)
예제 #4
0
  def testAssignAnchorsWithPadding(self):
    utils_3d = detection_3d_lib.Utils3D()
    anchor_bboxes = tf.constant([[0, 0, 0, 1, 2, 3, 0], [1, 1, 1, 3, 4, 5, 0.5],
                                 [1, 1, 1, 1, 2, 3, 0], [2, 2, 2, 3, 4, 5,
                                                         0.5]])
    gt_bboxes = anchor_bboxes + 0.05
    gt_bboxes_labels = tf.constant([1, 2, 3, 4])
    gt_bboxes_mask = tf.constant([1, 1, 0, 0])

    assigned_anchors = utils_3d.AssignAnchors(anchor_bboxes, gt_bboxes,
                                              gt_bboxes_labels, gt_bboxes_mask)
    with self.session() as sess:
      actual_assigned_anchors, gt_bboxes = sess.run((assigned_anchors,
                                                     gt_bboxes))

      # Last two boxes are padded, thus not assigned.
      self.assertAllEqual(actual_assigned_anchors.assigned_gt_labels,
                          [1, 2, 0, 0])
      self.assertAllEqual(actual_assigned_anchors.assigned_gt_bbox[0:2, :],
                          gt_bboxes[0:2, :])

      # 2nd and 3rd should match dummy bbox.
      self.assertAllEqual(actual_assigned_anchors.assigned_gt_bbox[2, :],
                          [0, 0, 0, 1, 1, 1, 0])
      self.assertAllEqual(actual_assigned_anchors.assigned_gt_bbox[3, :],
                          [0, 0, 0, 1, 1, 1, 0])

      # First two are foreground, last two are background.
      self.assertAllEqual(actual_assigned_anchors.assigned_cls_mask,
                          [1, 1, 1, 1])
      self.assertAllEqual(actual_assigned_anchors.assigned_reg_mask,
                          [1, 1, 0, 0])

      self.assertAllEqual(
          actual_assigned_anchors.assigned_gt_similarity_score.shape, [4])
예제 #5
0
def _MultiClassOrientedDecodeWithNMS(predicted_bboxes,
                                     classification_scores,
                                     nms_iou_threshold,
                                     score_threshold,
                                     max_boxes_per_class=None):
    """Perform Oriented Per Class NMS on predicted bounding boxes / logits.

  Args:
    predicted_bboxes: [batch_size, num_boxes, 7] float Tensor containing
      predicted bounding box coordinates.
    classification_scores: [batch_size, num_boxes, num_classes] float Tensor
      containing predicted classification scores for each box.
    nms_iou_threshold: IoU threshold to use when determining whether two boxes
      overlap for purposes of suppression. Either a float or a list of len
      num_classes.
    score_threshold: The score threshold passed to NMS that allows NMS to
      quickly ignore irrelevant boxes. Either a float or a list of len
      num_classes. It is strongly recommended that the score for non-active
      classes (like background) be set to 1 so they are discarded.
    max_boxes_per_class: The maximum number of boxes per example to emit. If
      None, this value is set to num_boxes from the shape of predicted_bboxes.

  Returns:
    bbox_indices: Indices of the boxes selected after NMS. Tensor of shape
      [batch_size, num_classes, max_boxes_per_class].
    predicted_bboxes: Filtered bboxes after NMS of shape
      [batch_size, num_classes, max_boxes_per_class, 7].
    bbox_scores: A float32 Tensor with the score for each box of shape
      [batch_size, num_classes, max_boxes_per_class].
    valid_mask: A float32 Tensor with 1/0 values indicating the validity of
      each box. 1 indicates valid, and 0 invalid. Tensor of shape
      [batch_size, num_classes, max_boxes_per_class].
  """
    utils_3d = detection_3d_lib.Utils3D()
    predicted_bboxes = py_utils.HasShape(predicted_bboxes, [-1, -1, 7])
    batch_size, num_predicted_boxes, _ = py_utils.GetShape(predicted_bboxes)
    classification_scores = py_utils.HasShape(
        classification_scores, [batch_size, num_predicted_boxes, -1])
    _, _, num_classes = py_utils.GetShape(classification_scores)

    if max_boxes_per_class is None:
        max_boxes_per_class = num_predicted_boxes

    # Compute NMS for every sample in the batch.
    bbox_indices, bbox_scores, valid_mask = utils_3d.BatchedOrientedNMSIndices(
        predicted_bboxes,
        classification_scores,
        nms_iou_threshold=nms_iou_threshold,
        score_threshold=score_threshold,
        max_boxes_per_class=max_boxes_per_class)

    # TODO(bencaine): Consider optimizing away the tf.tile or make upstream
    # changes to make predicted boxes include a class dimension.
    # Get the original box for each index selected by NMS.
    predicted_bboxes = tf.tile(predicted_bboxes[:, tf.newaxis, :, :],
                               [1, num_classes, 1, 1])
    predicted_bboxes = tf.array_ops.batch_gather(predicted_bboxes,
                                                 bbox_indices)
    return bbox_indices, predicted_bboxes, bbox_scores, valid_mask
예제 #6
0
  def testCornersToImagePlane(self):
    utils_3d = detection_3d_lib.Utils3D()
    batch = 4
    num_boxes = 50

    corners = tf.random.uniform([batch, num_boxes, 8, 3])
    velo_to_image_plane = tf.random.uniform([batch, 3, 4])
    corners_to_image_plane = utils_3d.CornersToImagePlane(
        corners, velo_to_image_plane)
    self.assertEqual([batch, num_boxes, 8, 2], corners_to_image_plane.shape)
예제 #7
0
  def __init__(self, params):
    super().__init__(params)
    p = self.params
    self._utils = detection_3d_lib.Utils3D()

    self.CreateChild('input_featurizer', p.input_featurizer)
    self.CreateChild('backbone', p.backbone)
    self.CreateChild('class_detector', p.class_detector)
    self.CreateChild('regression_detector', p.regression_detector)
    if p.direction_classifier_weight > 0.0:
      self.CreateChild('direction_classifier', p.direction_classifier)
예제 #8
0
  def testZeroResiduals(self):
    utils_3d = detection_3d_lib.Utils3D()

    anchor_bboxes = tf.constant([[1, 2, 3, 4, 3, 6, 0]], dtype=tf.float32)
    expected_predicted_bboxes = np.asarray([[1, 2, 3, 4, 3, 6, 0]])

    residuals = tf.zeros((1, 7))
    predicted_bboxes = utils_3d.ResidualsToBBoxes(anchor_bboxes, residuals)

    with self.session() as sess:
      actual_predicted_bboxes = sess.run(predicted_bboxes)
      self.assertAllClose(actual_predicted_bboxes, expected_predicted_bboxes)
예제 #9
0
  def __init__(self, params):
    super(ModelBase, self).__init__(params)
    p = self.params
    self._utils = detection_3d_lib.Utils3D()

    if len(p.per_class_loss_weight) != p.num_classes:
      raise ValueError('`Need `per_class_loss_weight` to be of len equal '
                       'to the number of classes.')
    if p.per_class_loss_weight[0] != 0.0:
      raise ValueError('Background class should be assigned 0 weight. '
                       'per_class_loss_weight={}'.format(
                           str(p.per_class_loss_weight)))
예제 #10
0
파일: pillars.py 프로젝트: lbxcfx/lingvo
  def __init__(self, params):
    super(ModelV1, self).__init__(params)
    p = self.params
    self._utils = detection_3d_lib.Utils3D()

    with tf.variable_scope(p.name):
      self.CreateChild('featurizer', p.featurizer)
      self.CreateChild('backbone', p.backbone)
      self.CreateChild('class_detector', p.class_detector)
      self.CreateChild('regression_detector', p.regression_detector)
      if p.direction_classifier_weight > 0.0:
        self.CreateChild('direction_classifier', p.direction_classifier)
예제 #11
0
  def testResidualsToBBoxPhiFloorMod(self):
    utils_3d = detection_3d_lib.Utils3D()

    anchor_bboxes = tf.constant([[1, 2, 3, 4, 3, 6, np.pi]], dtype=tf.float32)

    # We expected the returned phi value to be floormod w.r.t. pi.
    expected_predicted_bboxes = np.asarray([[1, 2, 3, 4, 3, 6, 1.]])

    residuals = tf.constant([[0, 0, 0, 0, 0, 0, 1.0]], dtype=tf.float32)
    predicted_bboxes = utils_3d.ResidualsToBBoxes(anchor_bboxes, residuals)

    with self.session() as sess:
      actual_predicted_bboxes = sess.run(predicted_bboxes)
      self.assertAllClose(actual_predicted_bboxes, expected_predicted_bboxes)
예제 #12
0
 def testMakeAnchorBoxesWithRotation(self):
   utils_3d = detection_3d_lib.Utils3D()
   anchor_bboxes = utils_3d.MakeAnchorBoxes(
       anchor_centers=tf.constant([[0, 0, 0], [1, 1, 1]], dtype=tf.float32),
       anchor_box_dimensions=tf.constant([[1, 2, 3], [3, 4, 5]],
                                         dtype=tf.float32),
       anchor_box_offsets=tf.constant([[0, 0, 0], [1, 1, 1]],
                                      dtype=tf.float32),
       anchor_box_rotations=tf.constant([0, 0.5]))
   with self.session() as sess:
     actual_anchor_bboxes = sess.run(anchor_bboxes)
     self.assertAllEqual(actual_anchor_bboxes,
                         [[[0, 0, 0, 1, 2, 3, 0], [1, 1, 1, 3, 4, 5, 0.5]],
                          [[1, 1, 1, 1, 2, 3, 0], [2, 2, 2, 3, 4, 5, 0.5]]])
예제 #13
0
    def testAssignAnchorsWithoutForceMatch(self):
        utils_3d = detection_3d_lib.Utils3D()
        anchor_bboxes = tf.constant(
            [
                [0, 1, 1, 2, 2, 2, 0],  # Ignored
                [-1, 1, 1, 2, 2, 2, 0],  # Background
                [0.9, 1, 1, 2, 2, 2, 0],  # Foreground
                [5, 5, 5, 1, 1, 2, 0],  # Background, since no force match
            ],
            dtype=tf.float32)

        # Second gt box should be forced match, third one should be ignored.
        gt_bboxes = tf.constant([[1, 1, 1, 2, 2, 2, 0], [5, 5, 5, 2, 2, 2, 0],
                                 [10, 10, 10, 2, 2, 2, 0]],
                                dtype=tf.float32)
        gt_bboxes_labels = tf.constant([1, 2, 3])
        gt_bboxes_mask = tf.constant([1, 1, 1])

        assigned_anchors = utils_3d.AssignAnchors(
            anchor_bboxes,
            gt_bboxes,
            gt_bboxes_labels,
            gt_bboxes_mask,
            foreground_assignment_threshold=0.5,
            background_assignment_threshold=0.25,
            force_match=False)
        with self.session() as sess:
            actual_assigned_anchors, gt_bboxes = sess.run(
                (assigned_anchors, gt_bboxes))

            self.assertAllEqual(actual_assigned_anchors.assigned_gt_idx,
                                [-1, -1, 0, -1])
            self.assertAllEqual(actual_assigned_anchors.assigned_gt_labels,
                                [0, 0, 1, 0])
            self.assertAllEqual(actual_assigned_anchors.assigned_gt_bbox, [
                [0, 0, 0, 1, 1, 1, 0],
                [0, 0, 0, 1, 1, 1, 0],
                [1, 1, 1, 2, 2, 2, 0],
                [0, 0, 0, 1, 1, 1, 0],
            ])

            self.assertAllEqual(actual_assigned_anchors.assigned_cls_mask,
                                [0, 1, 1, 1])
            self.assertAllEqual(actual_assigned_anchors.assigned_reg_mask,
                                [0, 0, 1, 0])

            self.assertAllEqual(
                actual_assigned_anchors.assigned_gt_similarity_score.shape,
                [4])
예제 #14
0
  def testCreateDenseCoordinates(self):
    utils_3d = detection_3d_lib.Utils3D()
    one_dim = utils_3d.CreateDenseCoordinates([(0.5, 1.5, 3)])
    with self.session() as sess:
      actual_one_dim = sess.run(one_dim)
      self.assertAllEqual(actual_one_dim, [[0.5], [1.0], [1.5]])

    two_by_two = utils_3d.CreateDenseCoordinates([(0, 1, 2), (1, 2, 2)])
    with self.session() as sess:
      actual_two_by_two = sess.run(two_by_two)
      self.assertAllEqual(actual_two_by_two, [[0, 1], [0, 2], [1, 1], [1, 2]])

    three_dims = utils_3d.CreateDenseCoordinates([(0, 1, 5), (1, 2, 5),
                                                  (0, 10, 5)])
    self.assertAllEqual(three_dims.shape, [5 * 5 * 5, 3])
예제 #15
0
    def testCreateDenseCoordinatesCenterInCell(self):
        utils_3d = detection_3d_lib.Utils3D()
        one_dim = utils_3d.CreateDenseCoordinates([(0., 3., 3)],
                                                  center_in_cell=True)
        with self.session():
            actual_one_dim = self.evaluate(one_dim)
            self.assertAllEqual(actual_one_dim, [[0.5], [1.5], [2.5]])

        two_by_two = utils_3d.CreateDenseCoordinates([(0, 1, 2), (1, 2, 2)],
                                                     center_in_cell=True)
        with self.session():
            actual_two_by_two = self.evaluate(two_by_two)
            self.assertAllEqual(
                actual_two_by_two,
                [[0.25, 1.25], [0.25, 1.75], [0.75, 1.25], [0.75, 1.75]])
예제 #16
0
 def testScaledHuberLoss(self):
     utils_3d = detection_3d_lib.Utils3D()
     labels = tf.constant([1, 2, 3], dtype=tf.float32)
     # Predictions are less than delta, exactly at delta, and more than delta,
     # respectively.
     predictions = tf.constant([1.4, 1.2, 4.0], dtype=tf.float32)
     delta = 0.8
     expected_loss = [
         1. / delta * 0.5 * (0.4)**2,
         0.5 * delta,
         1.0 - 0.5 * delta,
     ]
     loss = utils_3d.ScaledHuberLoss(labels, predictions, delta=delta)
     with self.session() as sess:
         actual_loss = sess.run(loss)
         self.assertAllClose(actual_loss, expected_loss)
예제 #17
0
  def testResidualsToBBoxes(self):
    utils_3d = detection_3d_lib.Utils3D()

    anchor_bboxes = tf.constant([[1, 2, 3, 4, 3, 6, 0]], dtype=tf.float32)
    expected_predicted_bboxes = np.asarray([[2, 22, 303, 4, 9, 12, 0.5]])

    residuals = tf.constant([[
        1. / 5, 20. / 5, 300. / 6, 0.,
        np.log(9. / 3.),
        np.log(12. / 6.),
        0.5,
    ]], dtype=tf.float32)  # pyformat: disable
    predicted_bboxes = utils_3d.ResidualsToBBoxes(anchor_bboxes, residuals)

    with self.session() as sess:
      actual_predicted_bboxes = sess.run(predicted_bboxes)
      self.assertAllClose(actual_predicted_bboxes, expected_predicted_bboxes)
예제 #18
0
 def testCornerLossAsym(self):
   utils_3d = detection_3d_lib.Utils3D()
   gt_bboxes = tf.constant([[[[0., 0., 0., 1., 1., 1., 0.],
                              [0., 0., 0., 1., 1., 1., 0.]]]])
   predicted_bboxes = tf.constant([[[
       [0., 0., 0., 1., 1., 1., 0.],  # Same as GT
       [0., 0., 0., 1., 1., 1., np.pi],  # Opposite heading
   ]]])
   expected_loss = [[[
       0.,
       8 * (np.sqrt(2) - 0.5),
   ]]]
   loss = utils_3d.CornerLoss(gt_bboxes, predicted_bboxes, symmetric=False)
   with self.session() as sess:
     actual_loss = sess.run(loss)
     print(actual_loss)
     self.assertAllClose(actual_loss, expected_loss)
예제 #19
0
 def testCornerLoss(self):
     utils_3d = detection_3d_lib.Utils3D()
     gt_bboxes = tf.constant([[[[0., 0., 0., 1., 1., 1., 0.],
                                [0., 0., 0., 1., 1., 1., 0.],
                                [0., 0., 0., 1., 1., 1., 0.],
                                [0., 0., 0., 1., 1., 1., 0.],
                                [0., 0., 0., 1., 1., 1., 0.]]]])
     predicted_bboxes = tf.constant([[[
         [0., 0., 0., 1., 1., 1., 0.],  # Same as GT
         [0., 0., 0., 1., 1., 1., np.pi],  # Opposite heading
         [0., 0., 0., 1., 1., 1., np.pi / 2.],  # 90-deg rotation
         [1., 1., 1., 1., 1., 1., 0],  # Different center
         [0., 0., 0., 2., 2., 2., 0],  # Different size
     ]]])
     loss = utils_3d.CornerLoss(gt_bboxes, predicted_bboxes)
     with self.session():
         actual_loss = self.evaluate(loss)
         self.assertEqual(actual_loss.shape, (1, 1, 5))
예제 #20
0
  def testLocalizationResiduals(self):
    utils_3d = detection_3d_lib.Utils3D()

    anchor_bboxes = tf.constant([[1, 2, 3, 4, 3, 6, 0]], dtype=tf.float32)
    gt_bboxes = tf.constant([[2, 22, 303, 4, 9, 12, 0.5]], dtype=tf.float32)

    # diagonal_xy = 5 [since sqrt(3^2 + 4^2) = 5]
    expected_residuals = np.asarray([[
        1. / 5,
        20. / 5,
        300. / 6,
        0.,
        np.log(9. / 3.),
        np.log(12. / 6.),
        0.5,
    ]])
    residuals = utils_3d.LocalizationResiduals(anchor_bboxes, gt_bboxes)

    with self.session() as sess:
      actual_residuals = sess.run(residuals)
      self.assertAllClose(actual_residuals, expected_residuals)
예제 #21
0
 def __init__(self, params):
   super(PointDetectorBase, self).__init__(params)
   p = self.params
   self._utils_3d = detection_3d_lib.Utils3D()
   with tf.variable_scope(p.name):
     self.CreateChild('output_decoder', p.output_decoder)
예제 #22
0
 def __init__(self, params):
     super().__init__(params)
     p = self.params
     self._utils_3d = detection_3d_lib.Utils3D()
     self.CreateChild('output_decoder', p.output_decoder)
예제 #23
0
    def testOrientedNMSIndices(self):
        utils_3d = detection_3d_lib.Utils3D()

        # Assignments and IoU scores calculated offline.
        bboxes_data = tf.constant(
            [[
                [10.35, 8.429, -1.003, 3.7, 1.64, 1.49, 1.582],
                [10.35, 8.429, -1.003, 3.7, 1.64, 1.49, 0.0],  # box 0 rotated
                [11.5, 8.429, -1.003, 3.7, 1.64, 1.49, 1.0
                 ],  # Rotated to overlap
                [13.01, 8.149, -0.953, 4.02, 1.55, 1.52, 1.592],
                [13.51, 8.39, -1.0, 4.02, 1.55, 1.52, 1.592
                 ],  # Slight translation
                [13.51, 8.39, -1.0, 1.0, 1.0, 1.52, 1.592],  # Smaller box
                [13.51, 8.39, -1.0, 1.0, 1.0, 1.52, 1.9],  # Smaller box
            ]],
            dtype=tf.float32)

        # Notes on the data:
        # Lets say we have 3 classes and a thresh of 0.1
        # Keep box [0, 3] for class 0
        # Keep box [6] only for class 1
        # Keep box [2] for class 2
        scores_data = tf.constant([[
            [0.9, 0.1, 0.0],
            [0.89, 0.1, 0.01],
            [0.5, 0.01, 0.49],
            [0.8, 0.1, 0.1],
            [0.79, 0.11, 0.2],
            [0.2, 0.8, 0.1],
            [0.1, 0.9, 0.0],
        ]],
                                  dtype=tf.float32)

        with self.session() as sess:
            outputs = utils_3d.BatchedOrientedNMSIndices(bboxes_data,
                                                         scores_data,
                                                         nms_iou_threshold=0.1,
                                                         score_threshold=0.3,
                                                         max_boxes_per_class=5)
            indices, scores, valid_mask = sess.run(outputs)

            class_masks = [
                valid_mask[0, cls_idx, :].astype(np.bool)
                for cls_idx in range(3)
            ]
            # Check the correct number of valid results per class
            self.assertEqual(class_masks[0].sum(), 2)
            self.assertEqual(class_masks[1].sum(), 1)
            self.assertEqual(class_masks[2].sum(), 1)

            # Check the results for each class
            self.assertAllEqual(indices[0, 0, class_masks[0]], [0, 3])
            self.assertAllClose(scores[0, 0, class_masks[0]], [0.9, 0.8])

            self.assertAllEqual(indices[0, 1, class_masks[1]], [6])
            self.assertAllClose(scores[0, 1, class_masks[1]], [0.9])

            self.assertAllEqual(indices[0, 2, class_masks[2]], [2])
            self.assertAllClose(scores[0, 2, class_masks[2]], [0.49])

            # Use a list of score thresholds instead
            outputs = utils_3d.BatchedOrientedNMSIndices(
                bboxes_data,
                scores_data,
                nms_iou_threshold=[0.1, 0.1, 0.1],
                score_threshold=[0.899, 0.5, 0.3],
                max_boxes_per_class=5)
            indices, scores, valid_mask = sess.run(outputs)

            class_masks = [
                valid_mask[0, cls_idx, :].astype(np.bool)
                for cls_idx in range(3)
            ]
            # Check the correct number of valid results per class
            self.assertEqual(class_masks[0].sum(), 1)
            self.assertEqual(class_masks[1].sum(), 1)
            self.assertEqual(class_masks[2].sum(), 1)

            # Check the results for each class
            self.assertAllEqual(indices[0, 0, class_masks[0]], [0])
            self.assertAllClose(scores[0, 0, class_masks[0]], [0.9])

            self.assertAllEqual(indices[0, 1, class_masks[1]], [6])
            self.assertAllClose(scores[0, 1, class_masks[1]], [0.9])

            self.assertAllEqual(indices[0, 2, class_masks[2]], [2])
            self.assertAllClose(scores[0, 2, class_masks[2]], [0.49])
예제 #24
0
  def ProcessOutputs(self, input_batch, model_outputs):
    """Produce additional decoder outputs for KITTI.

    Args:
      input_batch: A .NestedMap of the inputs to the model.
      model_outputs: A .NestedMap of the outputs of the model, including::
        - per_class_predicted_bboxes: [batch, num_classes, num_boxes, 7] float
          Tensor with per class 3D (7 DOF) bounding boxes.
        - per_class_predicted_bbox_scores: [batch, num_classes, num_boxes] float
          Tensor with per class, per box scores.
        - per_class_valid_mask: [batch, num_classes, num_boxes] masking Tensor
          indicating which boxes were still kept after NMS for each class.

    Returns:
      A NestedMap of additional decoder outputs needed for
      PostProcessDecodeOut.
    """
    p = self.params
    per_class_predicted_bboxes = model_outputs.per_class_predicted_bboxes
    batch_size, num_classes, num_boxes, _ = py_utils.GetShape(
        per_class_predicted_bboxes)
    flattened_num_boxes = num_classes * num_boxes

    input_labels = input_batch.decoder_copy.labels
    input_lasers = input_batch.decoder_copy.lasers
    input_images = input_batch.decoder_copy.images

    with tf.device('/cpu:0'):
      # Convert the predicted bounding box points to their corners
      # and then project them to the image plane.
      #
      # This output can be used to:
      #
      # A) Visualize bounding boxes (2d or 3d) on the camera image.
      #
      # B) Compute the height of the predicted boxes to filter 'too small' boxes
      #    as is done in the KITTI eval.
      predicted_bboxes = tf.reshape(per_class_predicted_bboxes,
                                    [batch_size, flattened_num_boxes, 7])
      bbox_corners = geometry.BBoxCorners(predicted_bboxes)
      bbox_corners = py_utils.HasShape(bbox_corners,
                                       [batch_size, flattened_num_boxes, 8, 3])
      utils_3d = detection_3d_lib.Utils3D()
      bbox_corners_image = utils_3d.CornersToImagePlane(
          bbox_corners, input_images.velo_to_image_plane)
      bbox_corners_image = py_utils.HasShape(
          bbox_corners_image, [batch_size, flattened_num_boxes, 8, 2])

      # Clip the bounding box corners so they remain within
      # the image coordinates.
      bbox2d_corners_image_clipped = self._BBox2DImage(bbox_corners_image,
                                                       input_images)
      bbox2d_corners_image_clipped = py_utils.HasShape(
          bbox2d_corners_image_clipped, [batch_size, flattened_num_boxes, 4])

      # Compute the frustum mask to filter out bounding boxes that
      # are 'outside the frustum'.
      frustum_mask = self._CreateFrustumMask(bbox_corners_image,
                                             bbox2d_corners_image_clipped,
                                             input_images.height,
                                             input_images.width)

      # Reshape all of these back to [batch_size, num_classes, num_boxes, ...]
      bbox_corners_image = tf.reshape(
          bbox_corners_image, [batch_size, num_classes, num_boxes, 8, 2])

      bbox2d_corners_image_clipped = tf.reshape(
          bbox2d_corners_image_clipped, [batch_size, num_classes, num_boxes, 4])
      frustum_mask = tf.reshape(frustum_mask,
                                [batch_size, num_classes, num_boxes])

    ret = py_utils.NestedMap({
        # For mAP eval
        'source_ids': input_labels.source_id,
        'difficulties': input_labels.difficulties,
        'num_points_in_bboxes': input_batch.labels.bboxes_3d_num_points,
        # For exporting.
        'velo_to_image_plane': input_images.velo_to_image_plane,
        'velo_to_camera': input_images.velo_to_camera,
        # Predictions.
        'bbox_corners_image': bbox_corners_image,
        'bbox2d_corners_image': bbox2d_corners_image_clipped,
        'frustum_mask': frustum_mask,
        # Ground truth.
        'bboxes_3d': input_labels.bboxes_3d,
        'bboxes_3d_mask': input_labels.bboxes_3d_mask,
        'unfiltered_bboxes_3d_mask': input_labels.unfiltered_bboxes_3d_mask,
        'labels': input_labels.labels,
    })

    laser_sample = self._SampleLaserForVisualization(
        input_lasers.points_xyz, input_lasers.points_padding)
    ret.update(laser_sample)

    if p.summarize_boxes_on_image:
      ret.camera_images = input_images.image
    return ret
예제 #25
0
def _SingleClassDecodeWithNMS(predicted_bboxes,
                              classification_scores,
                              nms_iou_threshold,
                              score_threshold,
                              max_boxes_per_class=None):
    """Perform NMS on predicted bounding boxes / associated logits.

  Args:
    predicted_bboxes: [batch_size, num_boxes, 7] float Tensor containing
      predicted bounding box coordinates.
    classification_scores: [batch_size, num_boxes, num_classes] float Tensor
      containing predicted classification scores for each box.
    nms_iou_threshold: IoU threshold to use when determining whether two boxes
      overlap for purposes of suppression.
    score_threshold: The score threshold passed to NMS that allows NMS to
      quickly ignore irrelevant boxes.
    max_boxes_per_class: The maximum number of boxes per example to emit. If
      None, this value is set to num_boxes from the shape of predicted_bboxes.

  Returns:
    predicted_bboxes: Filtered bboxes after NMS of shape
      [batch_size, num_classes, max_boxes_per_class, 7].
    bbox_scores: A float32 Tensor with the score for each box of shape
      [batch_size, num_classes, max_boxes_per_class].
    valid_mask: A float32 Tensor with 1/0 values indicating the validity of
      each box. 1 indicates valid, and 0 invalid. Tensor of shape
      [batch_size, num_classes, max_boxes_per_class].
  """
    utils_3d = detection_3d_lib.Utils3D()
    predicted_bboxes = py_utils.HasShape(predicted_bboxes, [-1, -1, 7])
    batch_size, num_predicted_boxes, _ = py_utils.GetShape(predicted_bboxes)
    classification_scores = py_utils.HasShape(
        classification_scores, [batch_size, num_predicted_boxes, -1])
    _, _, num_classes = py_utils.GetShape(classification_scores)

    if not isinstance(nms_iou_threshold, float):
        raise ValueError('Single class NMS only supports a scalar '
                         '`nms_iou_threshold`.')
    if not isinstance(score_threshold, float):
        raise ValueError('Single class NMS only supports a scalar '
                         '`score_threshold`.')

    if max_boxes_per_class is None:
        max_boxes_per_class = num_predicted_boxes

    # TODO(jngiam): Change to be per-class bboxes, and hence, per-class NMS, and
    # per-class thresholding.
    # [batch, num_predicted_boxes]
    nms_scores = tf.reduce_max(classification_scores, axis=-1)

    # Compute the most likely label by computing the highest class score from
    # the output of the sigmoid.
    likely_labels = tf.argmax(classification_scores, axis=-1)

    # When background is the most likely class for the box, mask out the scores
    # of that box from NMS scoring so the background boxes don't dominate the
    # NMS.
    nms_scores *= tf.cast(likely_labels > 0, tf.float32)

    # Compute NMS for every sample in the batch.
    nms_indices, valid_mask = utils_3d.BatchedNMSIndices(
        predicted_bboxes,
        nms_scores,
        nms_iou_threshold=nms_iou_threshold,
        score_threshold=score_threshold,
        max_num_boxes=max_boxes_per_class)

    # Reorder the box data and logits according to NMS scoring.
    predicted_bboxes = tf.array_ops.batch_gather(predicted_bboxes, nms_indices)
    classification_scores = tf.array_ops.batch_gather(classification_scores,
                                                      nms_indices)

    # Now reformat the output of NMS to match the format of the
    # MultiClassOrientedDecodeWithNMS, which outputs a per class NMS result.
    # This takes the leading shape of
    # [batch_size, num_classes, max_boxes_per_class] for all outputs, which
    # means since this NMS is not class specific we need to tile the outputs
    # num_classes times or reorder the data such that its [batch, num_classes].
    predicted_bboxes = tf.tile(predicted_bboxes[:, tf.newaxis, :, :],
                               [1, num_classes, 1, 1])
    classification_scores = tf.transpose(classification_scores, (0, 2, 1))
    classification_scores = py_utils.HasShape(
        classification_scores, [batch_size, num_classes, max_boxes_per_class])
    valid_mask = tf.tile(valid_mask[:, tf.newaxis, :], [1, num_classes, 1])
    return predicted_bboxes, classification_scores, valid_mask