def tune_meta_learner(): cs = build_configspace() def_value = obj_function(cs.get_default_configuration()) print("Default Value: %.2f" % (def_value)) bo = BayesianOptimization(obj_function, cs, max_runs=50, time_limit_per_trial=1200) bo.run() inc_value = bo.get_incumbent() config = inc_value[0][0] print('Best hyperparameter config found', config) return config
def tune_meta_learner(): cs = build_configspace() def_value = objective_function(cs.get_default_configuration()) print("Default Value: %.2f" % (def_value)) bo = BayesianOptimization(objective_function, cs, max_runs=50, time_limit_per_trial=150) bo.run() inc_value = bo.get_incumbent() config = inc_value[0][0] with open(meta_dir + 'meta_learner_%s_%s_%s_config.pkl' % (meta_algo, metric, hash_id), 'wb') as f: pk.dump(config, f) print('Best hyperparameter config found', config) return config
def test_branin(): space_dict = { "parameters": { "x1": { "type": "float", "bound": [-5, 10], "default": 0 }, "x2": { "type": "float", "bound": [0, 15] }, } } cs = get_config_space_from_dict(space_dict) print(cs) bo = BayesianOptimization(branin, cs, max_runs=30, time_limit_per_trial=3, logging_dir='logs') bo.run() inc_value = bo.get_incumbent() print('BO', '=' * 30) print(inc_value) # Evaluate the random search. bo = BayesianOptimization(branin, cs, max_runs=30, time_limit_per_trial=3, sample_strategy='random', logging_dir='logs') bo.run() inc_value = bo.get_incumbent() print('RANDOM', '=' * 30) print(inc_value) # Evaluate batch BO. bo = BatchBayesianOptimization(branin, cs, max_runs=10, batch_size=3, time_limit_per_trial=3, sample_strategy='median_imputation', logging_dir='logs') bo.run() inc_value = bo.get_incumbent() print('MEDIAN IMPUTATION BATCH BO', '=' * 30) print(inc_value) # Evaluate batch BO. bo = BatchBayesianOptimization(branin, cs, max_runs=10, batch_size=3, time_limit_per_trial=3, sample_strategy='local_penalization', logging_dir='logs') bo.run() inc_value = bo.get_incumbent() print('LOCAL PENALIZATION BATCH BO', '=' * 30) print(inc_value)
"bound": [0, 15] }, } } from litebo.utils.config_space.space_utils import get_config_space_from_dict cs = get_config_space_from_dict(space_dict) print(cs) bo = BayesianOptimization(branin, cs, max_runs=90, time_limit_per_trial=3, logging_dir='logs') bo.run() inc_value = bo.get_incumbent() print('BO', '=' * 30) print(inc_value) # Evaluate the random search. bo = BayesianOptimization(branin, cs, max_runs=90, time_limit_per_trial=3, sample_strategy='random', logging_dir='logs') bo.run() inc_value = bo.get_incumbent() print('RANDOM', '=' * 30) print(inc_value)