예제 #1
0
def run(name, config):
    """
    Runs the analysis of the coverage of the ice sheet over the land mass.
    Produces both an overall coverage percentage metric and a coverage plot.

    Args:
        name: The name of the test
        config: A dictionary representation of the configuration file
    Returns:
        An elements.page with the list of elements to display
    """

    greenland_data = os.path.join(livvkit.__path__[0], config['data_dir'],
                                  config['gl_data'])
    velocity_data = os.path.join(livvkit.__path__[0], config['data_dir'],
                                 config['vel_data'])

    if not (os.path.exists(greenland_data) and os.path.exists(velocity_data)):
        # Add more handling here -- what do we want to return for failed tests
        return elements.error("lvargo13",
                              "Could not find necessary data for validation!")

    # Generate the script
    output_dir = os.path.join(livvkit.index_dir, 'validation', 'imgs')
    output_file_base = os.path.join(output_dir, 'lvargo13')
    functions.mkdir_p(output_dir)

    ncl_command = 'ncl \'gl_data = addfile("' + greenland_data + '", "r")\' '  \
                  + '\'vel_data = addfile("' + velocity_data + '", "r")\' '  \
                  + '\'model_prefix = "' \
                  + os.path.join(livvkit.__path__[0], config['data_dir'], config['model_prefix']) \
                  + '"\' '  \
                  + '\'model_suffix = "' + config['model_suffix'] + '"\' '  \
                  + '\'model_start = ' + config['model_start'] + '\' '  \
                  + '\'model_end = ' + config['model_end'] + '\' '  \
                  + '\'plot_file_base = "' + output_file_base + '"\' ' \
                  + os.path.join(livvkit.__path__[0], config['plot_script'])

    # Be cautious about running subprocesses
    p = subprocess.Popen(ncl_command,
                         shell=True,
                         stdout=subprocess.PIPE,
                         stderr=subprocess.PIPE)
    ncl_out, ncl_err = p.communicate()

    # TODO: Put some error checking here

    output_plots = [
        os.path.basename(p) for p in glob.glob(output_file_base + "*.png")
    ]
    plot_list = []
    for plot in output_plots:
        plot_list.append(elements.image(plot, "", plot))

    the_page = elements.page("lvargo13", config['description'],
                             elements.gallery("Plots", plot_list))

    return the_page
예제 #2
0
def run(name, config):
    """
    Runs the analysis of the coverage of the ice sheet over the land mass.
    Produces both an overall coverage percentage metric and a coverage plot.

    Args:
        name: The name of the test
        config: A dictionary representation of the configuration file
    Returns:
        An elements.page with the list of elements to display
    """
    bench_data = os.path.join(livvkit.__path__[0], config['data_dir'],
                              config['bench_data'])
    model_data = os.path.join(livvkit.__path__[0], config['data_dir'],
                              config['model_data'])

    if not (os.path.exists(model_data) and os.path.exists(bench_data)):
        # Add more handling here -- what do we want to return for failed tests
        print(
            "ERROR: Could not find necessary data to run the coverage validation!"
        )
        print(model_data)
        print(bench_data)
        print("")
        return elements.error(
            "coverage",
            "Could not find necessary data to run the coverage validation!")

    # Generate the script
    plot_name = "coverage.png"
    output_dir = os.path.join(livvkit.index_dir, 'validation', 'imgs')
    output_path = os.path.join(output_dir, plot_name)
    functions.mkdir_p(output_dir)

    plot_coverage(config['plot_script'], model_data, bench_data, output_path)

    plot_list = [elements.image(plot_name, " ", plot_name)]
    the_page = elements.page('coverage', config['description'],
                             elements.gallery("Plots", plot_list))

    return the_page
예제 #3
0
            strong_data, "Strong scaling efficiency for " + case.capitalize(),
            "Parallel efficiency (% of linear)", "",
            os.path.join(plot_dir, case + "_strong_scaling_efficiency.png")),
    ]

    timing_plots = timing_plots + \
        [generate_timing_breakdown_plot(timing_data[s],
                                        config['scaling_var'],
                                        "Timing breakdown for " + case.capitalize()+" "+s,
                                        "",
                                        os.path.join(plot_dir, case+"_"+s+"_timing_breakdown.png")
                                        )
         for s in sorted(six.iterkeys(timing_data), key=functions.sort_scale)]

    # Build an image gallery and write the results
    el = [elements.gallery("Performance Plots", timing_plots)]
    result = elements.page(case, config["description"], element_list=el)
    summary[case] = _summarize_result(timing_data, config)
    _print_result(case, summary)
    functions.create_page_from_template(
        "performance.html",
        os.path.join(livvkit.index_dir, "performance", case + ".html"))
    functions.write_json(result, os.path.join(livvkit.output_dir,
                                              "performance"), case + ".json")


def _analyze_case(model_dir, bench_dir, config):
    """ Generates statistics from the timing summaries """
    model_timings = set(
        glob.glob(os.path.join(model_dir, "*" + config["timing_ext"])))
    if bench_dir is not None:
예제 #4
0
파일: ismip.py 프로젝트: arbennett/LIVVkit
                for model in sorted(six.iterkeys(analysis[a])):
                    plt.plot(analysis[a][model][coord],
                             analysis[a][model][config['plot_vars'][p]],
                             line_style[model],
                             color=case_color[model],
                             linewidth=2,
                             label=a+'-'+model)

            plt.legend(loc='best')
            if livvkit.publish:
                plt.savefig( os.path.splitext(plot_file)[0]+'.eps', dpi=600 )
            plt.savefig(plot_file)
            plt.close()
            plot_list.append(elements.image(title, description, os.path.basename(plot_file)))

    return elements.gallery("Numerics Plots", plot_list)


def summarize_result(data, config):
    case = config['name']
    summary = LIVVDict()
    lengths = list(set([get_case_length(d) for d in six.iterkeys(data)]))

    for p, pattern in enumerate(sorted(setup[case]['pattern'])):
        for l in sorted(lengths):

            recreate_file = os.path.join(
                    livvkit.__path__[0], setup[case]["data_dir"], pattern
                    ).replace('???', l)

            axis, fs_amin, fs_amax, fs_mean, fs_std, ho_amin, ho_amax, ho_mean, ho_std = \
예제 #5
0
파일: ismip.py 프로젝트: LIVVkit/LIVVkit
def run(config, analysis_data):
    case = config['name']
    if case in ['ismip-hom-a', 'ismip-hom-c', 'ismip-hom-f']:
        coord = 'x_hat'
    else:
        coord = 'y_hat'

    lengths = list(set(
        [get_case_length(d) for d in six.iterkeys(analysis_data)]
        ))

    plot_list = []
    for p, pattern in enumerate(sorted(setup[case]['pattern'])):
        fig_label = pattern.split('_')[1]
        description = ''

        for l in sorted(lengths):
            plt.figure(figsize=(10, 8), dpi=150)
            plt.xlabel(setup[case]['xlabel'][p])
            plt.ylabel(setup[case]['ylabel'][p])

            if case in ['ismip-hom-a', 'ismip-hom-c']:
                plt.title(str(int(l))+' km')
                title = fig_label[0:-1]+'. '+fig_label[-1]+': '+str(int(l))+' km'
            else:
                plt.title('No-Slip Bed')
                title = fig_label[0:-2]+'. '+fig_label[-2:]+': No-Slip Bed'

            plot_file = os.path.join(config["plot_dir"], config['name']+'_'+fig_label+'_'+l+'.png')
            recreate_file = os.path.join(
                    livvkit.__path__[0], setup[case]["data_dir"], pattern
                    ).replace('???', l)
            axis, fs_amin, fs_amax, fs_mean, fs_std, ho_amin, ho_amax, ho_mean, ho_std = \
                np.genfromtxt(recreate_file, delimiter=',', missing_values='nan', unpack=True)

            if case in ['ismip-hom-f']:
                axis = axis*100.0 - 50.0

            plt.fill_between(axis, ho_amin, ho_amax, facecolor='green', alpha=0.5)
            plt.fill_between(axis, fs_amin, fs_amax, facecolor='blue', alpha=0.5)
            plt.plot(axis, fs_mean, 'b-', linewidth=2, label='Full stokes')
            plt.plot(axis, ho_mean, 'g-', linewidth=2, label='Higher order')

            analysis = {}
            for a in six.iterkeys(analysis_data):
                if int(l) == int(a.split('-')[-1][1:]):
                    analysis[a] = analysis_data[a]

            for a in six.iterkeys(analysis):
                for model in sorted(six.iterkeys(analysis[a])):
                    plt.plot(analysis[a][model][coord],
                             analysis[a][model][config['plot_vars'][p]],
                             line_style[model],
                             color=case_color[model],
                             linewidth=2,
                             label=a+'-'+model)

            plt.legend(loc='best')
            if livvkit.publish:
                plt.savefig(os.path.splitext(plot_file)[0]+'.eps', dpi=600)
            plt.savefig(plot_file)
            plt.close()
            plot_list.append(elements.image(title, description, os.path.basename(plot_file)))

    return elements.gallery("Numerics Plots", plot_list)
예제 #6
0
        details[var]['std (case 1, case 2)'] = (
            np.std(averages[args.case1][var]['annuals']),
            np.std(averages[args.case2][var]['annuals']))

        if details[var]['T test (t, p)'][0] is None:
            details[var]['h0'] = '-'
        elif details[var]['K-S test (D, p)'][1] < 0.05:
            details[var]['h0'] = 'reject'
        else:
            details[var]['h0'] = 'accept'

        img_file = os.path.relpath(os.path.join(args.img_dir, var + '.png'),
                                   os.getcwd())
        prob_plot(args, var, averages, 20, img_file)

        img_desc = 'Mean annual global average of {} for <em>{}</em> is {:.3e} and for <em>{}</em> is {:.3e}'.format(
            var, args.case1, details[var]['mean (case 1, case 2)'][0],
            args.case2, details[var]['mean (case 1, case 2)'][1])

        img_link = os.path.join(os.path.basename(args.img_dir),
                                os.path.basename(img_file))
        img_list.append(el.image(var, img_desc, img_link))

    img_gal = el.gallery('Analyzed variables', img_list)

    return details, img_gal


if __name__ == '__main__':
    print_details(main(parse_args()))
예제 #7
0
def run_suite(case, config, summary):
    """ Run the full suite of performance tests """
    config["name"] = case
    timing_data = dict()
    model_dir = os.path.join(livvkit.model_dir, config['data_dir'], case)
    bench_dir = os.path.join(livvkit.bench_dir, config['data_dir'], case)
    plot_dir = os.path.join(livvkit.output_dir, "performance", "imgs")
    model_cases = functions.collect_cases(model_dir)
    bench_cases = functions.collect_cases(bench_dir)
    functions.mkdir_p(plot_dir)

    # Generate all of the timing data
    for subcase in sorted(model_cases):
        bench_subcases = bench_cases[subcase] if subcase in bench_cases else []
        timing_data[subcase] = dict()
        for mcase in model_cases[subcase]:
            config["case"] = "-".join([subcase, mcase])
            bpath = (os.path.join(bench_dir, subcase, mcase.replace("-", os.path.sep))
                     if mcase in bench_subcases else None)
            mpath = os.path.join(model_dir, subcase, mcase.replace("-", os.path.sep))
            timing_data[subcase][mcase] = _analyze_case(mpath, bpath, config)

    # Create scaling and timing breakdown plots
    weak_data = weak_scaling(timing_data, config['scaling_var'],
                             config['weak_scaling_points'])
    strong_data = strong_scaling(timing_data, config['scaling_var'],
                                 config['strong_scaling_points'])

    timing_plots = [
        generate_scaling_plot(weak_data,
                              "Weak scaling for " + case.capitalize(),
                              "runtime (s)", "",
                              os.path.join(plot_dir, case + "_weak_scaling.png")
                              ),
        weak_scaling_efficiency_plot(weak_data,
                                     "Weak scaling efficiency for " + case.capitalize(),
                                     "Parallel efficiency (% of linear)", "",
                                     os.path.join(plot_dir, case + "_weak_scaling_efficiency.png")
                                     ),
        generate_scaling_plot(strong_data,
                              "Strong scaling for " + case.capitalize(),
                              "Runtime (s)", "",
                              os.path.join(plot_dir, case + "_strong_scaling.png")
                              ),
        strong_scaling_efficiency_plot(strong_data,
                                       "Strong scaling efficiency for " + case.capitalize(),
                                       "Parallel efficiency (% of linear)", "",
                                       os.path.join(plot_dir,
                                                    case + "_strong_scaling_efficiency.png")
                                       ),
        ]

    timing_plots = timing_plots + \
        [generate_timing_breakdown_plot(timing_data[s],
                                        config['scaling_var'],
                                        "Timing breakdown for " + case.capitalize()+" "+s,
                                        "",
                                        os.path.join(plot_dir, case+"_"+s+"_timing_breakdown.png")
                                        )
         for s in sorted(six.iterkeys(timing_data), key=functions.sort_scale)]

    # Build an image gallery and write the results
    el = [
            elements.gallery("Performance Plots", timing_plots)
         ]
    result = elements.page(case, config["description"], element_list=el)
    summary[case] = _summarize_result(timing_data, config)
    _print_result(case, summary)
    functions.create_page_from_template("performance.html",
                                        os.path.join(livvkit.index_dir, "performance",
                                                     case + ".html"))
    functions.write_json(result, os.path.join(livvkit.output_dir, "performance"),
                         case + ".json")