def info_from_db_orbit(orbit): mod = orbit['modulus'] conductor = orbit['conductor'] orbit_index = orbit['orbit_index'] orbit_letter = cremona_letter_code(orbit_index - 1) orbit_label = "{}.{}".format(mod, orbit_letter) order = orbit['order'] is_odd = 'Odd' if _is_odd(orbit['parity']) else 'Even' is_prim = _is_primitive(orbit['is_primitive']) results = [] for num in orbit['galois_orbit']: results.append( (mod, num, conductor, orbit_label, order, is_odd, is_prim, WebDirichlet.char2tex(mod, num))) return results
def info_from_db_orbit(orbit): mod = orbit['modulus'] conductor = orbit['conductor'] orbit_index = orbit['orbit_index'] orbit_letter = cremona_letter_code(orbit_index - 1) orbit_label = "{}.{}".format(mod, orbit_letter) order = orbit['order'] is_odd = 'Odd' if _is_odd(orbit['parity']) else 'Even' is_prim = _is_primitive(orbit['is_primitive']) results = [] for num in orbit['galois_orbit']: results.append(( mod, num, conductor, orbit_label, order, is_odd, is_prim, WebDirichlet.char2tex(mod, num) )) return results
def initLfunction(L, args, request): ''' Sets the properties to show on the homepage of an L-function page. ''' info = {'title': L.title} try: info['citation'] = L.citation except AttributeError: info['citation'] = "" try: info['support'] = L.support except AttributeError: info['support'] = "" info['Ltype'] = L.Ltype() # Here we should decide which values are indeed special values # According to Brian, odd degree has special value at 1, and even # degree has special value at 1/2. # (however, I'm not sure this is true if L is not primitive -- GT) # Now we usually display both if L.Ltype() != "artin" or (L.Ltype() == "artin" and L.sign != 0): # if is_even(L.degree) : # info['sv12'] = specialValueString(L, 0.5, '1/2') # if is_odd(L.degree): # info['sv1'] = specialValueString(L, 1, '1') info['sv1'] = specialValueString(L, 1, '1') info['sv12'] = specialValueString(L, 0.5, '1/2') info['args'] = args info['credit'] = L.credit # info['citation'] = L.citation try: info['factorization'] = L.factorization except: pass try: info['url'] = L.url except: info['url'] = '' info['degree'] = int(L.degree) info['zeroeslink'] = (request.url.replace('/L/', '/L/Zeros/'). replace('/Lfunction/', '/L/Zeros/'). replace('/L-function/', '/L/Zeros/')) # url_for('zeroesLfunction', **args) info['plotlink'] = (request.url.replace('/L/', '/L/Plot/'). replace('/Lfunction/', '/L/Plot/'). replace('/L-function/', '/L/Plot/')) # info['plotlink'] = url_for('plotLfunction', **args) info['bread'] = [] info['properties2'] = set_gaga_properties(L) # Create friendlink by removing 'L/' and ending '/' friendlink = request.url.replace('/L/', '/').replace('/L-function/', '/').replace('/Lfunction/', '/') splitlink = friendlink.rpartition('/') friendlink = splitlink[0] + splitlink[2] logger.debug(L.Ltype()) if L.Ltype() == 'maass': if L.group == 'GL2': minNumberOfCoefficients = 100 # TODO: Fix this to take level into account if len(L.dirichlet_coefficients) < minNumberOfCoefficients: info['zeroeslink'] = '' info['plotlink'] = '' info['bread'] = get_bread(2, [('Maass Form', url_for('.l_function_maass_browse_page')), ('\(' + L.texname + '\)', request.url)]) info['friends'] = [('Maass Form ', friendlink)] else: info['bread'] = get_bread(L.degree, [('Maass Form', url_for('.l_function_maass_gln_browse_page', degree='degree' + str(L.degree))), (L.dbid, request.url)]) elif L.Ltype() == 'riemann': info['bread'] = get_bread(1, [('Riemann Zeta', request.url)]) info['friends'] = [('\(\mathbb Q\)', url_for('number_fields.by_label', label='1.1.1.1')), ('Dirichlet Character \(\\chi_{1}(1,\\cdot)\)', url_character(type='Dirichlet', modulus=1, number=1))] elif L.Ltype() == 'dirichlet': mod, num = L.charactermodulus, L.characternumber Lpattern = r"\(L(s,\chi_{%s}(%s,·))\)" if mod > 1: pmod,pnum = WebDirichlet.prevprimchar(mod, num) Lprev = (Lpattern%(pmod,pnum),url_for('.l_function_dirichlet_page',modulus=pmod,number=pnum)) else: Lprev = ('','') nmod,nnum = WebDirichlet.nextprimchar(mod, num) Lnext = (Lpattern%(nmod,nnum),url_for('.l_function_dirichlet_page',modulus=nmod,number=nnum)) info['navi'] = (Lprev,Lnext) snum = str(L.characternumber) smod = str(L.charactermodulus) charname = WebDirichlet.char2tex(smod, snum) info['bread'] = get_bread(1, [(charname, request.url)]) info['friends'] = [('Dirichlet Character ' + str(charname), friendlink)] elif L.Ltype() == 'ellipticcurveQ': label = L.label while friendlink[len(friendlink) - 1].isdigit(): # Remove any number at the end to get isogeny class url friendlink = friendlink[0:len(friendlink) - 1] info['friends'] = [('Isogeny class ' + label, friendlink)] for i in range(1, L.nr_of_curves_in_class + 1): info['friends'].append(('Elliptic curve ' + label + str(i), friendlink + str(i))) if L.modform: info['friends'].append(('Modular form ' + label.replace('.', '.2'), url_for("emf.render_elliptic_modular_forms", level=L.modform['level'], weight=2, character=0, label=L.modform['iso']))) info['friends'].append(('L-function ' + label.replace('.', '.2'), url_for('.l_function_emf_page', level=L.modform['level'], weight=2, character=0, label=L.modform['iso'], number=0))) info['friends'].append( ('Symmetric square L-function', url_for(".l_function_ec_sym_page", power='2', label=label))) info['friends'].append( ('Symmetric cube L-function', url_for(".l_function_ec_sym_page", power='3', label=label))) info['bread'] = get_bread(2, [('Elliptic curve', url_for('.l_function_ec_browse_page')), (label, url_for('.l_function_ec_page', label=label))]) elif L.Ltype() == 'ellipticmodularform': friendlink = friendlink + L.addToLink # Strips off the embedding friendlink = friendlink.rpartition('/')[0] # number for the L-function if L.character: info['friends'] = [('Modular form ' + str( L.level) + '.' + str(L.weight) + '.' + str(L.character) + str(L.label), friendlink)] else: info['friends'] = [('Modular form ' + str(L.level) + '.' + str(L.weight) + str( L.label), friendlink)] if L.ellipticcurve: info['friends'].append( ('EC isogeny class ' + L.ellipticcurve, url_for("by_ec_label", label=L.ellipticcurve))) info['friends'].append(('L-function ' + str(L.level) + '.' + str(L.label), url_for('.l_function_ec_page', label=L.ellipticcurve))) for i in range(1, L.nr_of_curves_in_class + 1): info['friends'].append(('Elliptic curve ' + L.ellipticcurve + str(i), url_for("by_ec_label", label=L.ellipticcurve + str(i)))) info['friends'].append( ('Symmetric square L-function', url_for(".l_function_ec_sym_page", power='2', label=label))) info['friends'].append( ('Symmetric cube L-function', url_for(".l_function_ec_sym_page", power='3', label=label))) elif L.Ltype() == 'hilbertmodularform': friendlink = '/'.join(friendlink.split('/')[:-1]) info['friends'] = [('Hilbert Modular Form', friendlink.rpartition('/')[0])] elif L.Ltype() == 'dedekindzeta': info['friends'] = [('Number Field', friendlink)] elif L.Ltype() in ['lcalcurl', 'lcalcfile']: info['bread'] = [('L-functions', url_for('.l_function_top_page'))] elif L.Ltype() == 'SymmetricPower': def ordinal(n): if n == 2: return "Square" elif n == 3: return "Cube" elif 10 <= n % 100 < 20: return str(n) + "th Power" else: return str(n) + {1: 'st', 2: 'nd', 3: 'rd'}.get(n % 10, "th") + " Power" if L.m == 2: info['bread'] = get_bread(3, [("Symmetric square of Elliptic curve", url_for('.l_function_ec_sym2_browse_page')), (L.label, url_for('.l_function_ec_sym_page', label=L.label,power=L.m))]) elif L.m == 3: info['bread'] = get_bread(4, [("Symmetric cube of Elliptic curve", url_for('.l_function_ec_sym3_browse_page')), (L.label, url_for('.l_function_ec_sym_page', label=L.label,power=L.m))]) else: info['bread'] = [('L-functions', url_for('.l_function_top_page')), ('Symmetric %s of Elliptic curve ' % ordinal(L.m) + str(L.label), url_for('.l_function_ec_sym_page', label=L.label,power=L.m))] friendlink = request.url.replace('/L/SymmetricPower/%d/' % L.m, '/') splitlink = friendlink.rpartition('/') friendlink = splitlink[0] + splitlink[2] friendlink2 = request.url.replace('/L/SymmetricPower/%d/' % L.m, '/L/') splitlink = friendlink2.rpartition('/') friendlink2 = splitlink[0] + splitlink[2] info['friends'] = [('Isogeny class ' + L.label, friendlink), ('Symmetric 1st Power', friendlink2)] for j in range(2, L.m + 2): if j != L.m: friendlink3 = request.url.replace('/L/SymmetricPower/%d/' % L.m, '/L/SymmetricPower/%d/' % j) info['friends'].append(('Symmetric %s' % ordinal(j), friendlink3)) elif L.Ltype() == 'siegelnonlift' or L.Ltype() == 'siegeleisenstein' or L.Ltype() == 'siegelklingeneisenstein' or L.Ltype() == 'siegelmaasslift': weight = str(L.weight) number = str(L.number) info['friends'] = [('Siegel Modular Form', friendlink)] elif L.Ltype() == "artin": # info['zeroeslink'] = '' # info['plotlink'] = '' info['friends'] = [('Artin representation', L.artin.url_for())] if L.sign == 0: # The root number is now unknown info['zeroeslink'] = '' info['plotlink'] = '' info['dirichlet'] = lfuncDStex(L, "analytic") info['eulerproduct'] = lfuncEPtex(L, "abstract") info['functionalequation'] = lfuncFEtex(L, "analytic") info['functionalequationSelberg'] = lfuncFEtex(L, "selberg") if len(request.args) == 0: lcalcUrl = request.url + '?download=lcalcfile' else: lcalcUrl = request.url + '&download=lcalcfile' info['downloads'] = [('Lcalcfile', lcalcUrl)] return info
def charinfo(chi): """ return data associated to the WebDirichletCharacter chi """ return (chi.modulus(), chi.number(), chi.conductor(), chi.multiplicative_order(), chi.is_odd(), chi.is_primitive(), WebDirichlet.char2tex(chi.modulus(), chi.number()))
def set_bread_and_friends(L, request): ''' Returns the list of friends to link to and the bread crumbs. Depends on the type of L-function and needs to be added to for new types ''' bread = [] friends = [] origins = [] factors = [] instances = [] # Create default friendlink by removing 'L/' and ending '/' friendlink = request.path.replace('/L/', '/').replace('/L-function/', '/').replace('/Lfunction/', '/') splitlink = friendlink.rpartition('/') friendlink = splitlink[0] + splitlink[2] if L.Ltype() == 'riemann': friends = [('\(\mathbb Q\)', url_for('number_fields.by_label', label='1.1.1.1')), ('Dirichlet Character \(\\chi_{1}(1,\\cdot)\)',url_for('characters.render_Dirichletwebpage', modulus=1, number=1))] bread = get_bread(1, [('Riemann Zeta', request.path)]) elif L.Ltype() == 'dirichlet': snum = str(L.characternumber) smod = str(L.charactermodulus) charname = WebDirichlet.char2tex(smod, snum) friends = [('Dirichlet Character ' + str(charname), friendlink)] if L.fromDB and not L.selfdual: friends.append(('Dual L-function', L.dual_link)) bread = get_bread(1, [(charname, request.path)]) elif L.Ltype() == 'ellipticcurve': bread = L.bread origins = L.origins friends = L.friends factors = L.factors instances = L.instances elif L.Ltype() == 'ellipticmodularform': friendlink = friendlink.rpartition('/')[0] # Strips off the embedding # number for the L-function if L.character: # TODO: Probably always true now full_label = ( str(L.level) + '.' + str(L.weight) + '.' + str(L.character) + str(L.label) ) else: full_label = str(L.level) + '.' + str(L.weight) + str(L.label) origins = [('Modular form ' + full_label, friendlink)] if L.ellipticcurve: origins.append( ('Isogeny class ' + L.ellipticcurve, url_for("ec.by_ec_label", label=L.ellipticcurve))) # DEPRECATED #for i in range(1, L.nr_of_curves_in_class + 1): # friends.append(('Elliptic curve ' + L.ellipticcurve + str(i), # url_for("ec.by_ec_label", label=L.ellipticcurve + str(i)))) if not isogeny_class_cm(L.ellipticcurve): friends.append( ('Symmetric square L-function', url_for(".l_function_ec_sym_page_label", power='2', label=L.ellipticcurve))) friends.append( ('Symmetric cube L-function', url_for(".l_function_ec_sym_page_label", power='3', label=L.ellipticcurve))) bread = get_bread(2, [('Cusp Form', url_for('.l_function_cuspform_browse_page')), (full_label, request.path)]) elif L.Ltype() == 'maass': if L.group == 'GL2': friends = [('Maass Form ', friendlink)] bread = get_bread(2, [('Maass Form', url_for('.l_function_maass_browse_page')), ('\(' + L.texname + '\)', request.path)]) else: if L.fromDB and not L.selfdual: friends = [('Dual L-function', L.dual_link)] bread = get_bread(L.degree, [('Maass Form', url_for('.l_function_maass_gln_browse_page', degree='degree' + str(L.degree))), (L.maass_id.partition('/')[2], request.path)]) elif L.Ltype() == 'hilbertmodularform': friendlink = '/'.join(friendlink.split('/')[:-1]) friends = [('Hilbert modular form ' + L.label, friendlink.rpartition('/')[0])] if L.degree == 4: bread = get_bread(4, [(L.label, request.path)]) else: bread = [('L-functions', url_for('.l_function_top_page'))] elif (L.Ltype() == 'siegelnonlift' or L.Ltype() == 'siegeleisenstein' or L.Ltype() == 'siegelklingeneisenstein' or L.Ltype() == 'siegelmaasslift'): weight = str(L.weight) label = 'Sp4Z.' + weight + '_' + L.orbit friendlink = '/'.join(friendlink.split('/')[:-3]) + '.' + weight + '_' + L.orbit friends = [('Siegel Modular Form ' + label, friendlink)] if L.degree == 4: bread = get_bread(4, [(label, request.path)]) else: bread = [('L-functions', url_for('.l_function_top_page'))] elif L.Ltype() == 'genus2curveQ': (cond, dummy, alpha) = L.label.partition('.') friends = [('Isogeny class ' + L.label, url_for('g2c.by_url_isogeny_class_label', cond = cond, alpha = alpha))] bread = get_bread(4, [(L.label, request.path)]) elif L.Ltype() == 'dedekindzeta': friends = [('Number Field', friendlink)] if L.degree <= 4: bread = get_bread(L.degree, [(L.label, request.path)]) else: bread = [('L-functions', url_for('.l_function_top_page'))] elif L.Ltype() == "artin": friends = [('Artin representation', L.artin.url_for())] if L.degree <= 4: bread = get_bread(L.degree, [(L.label, request.path)]) else: bread = [('L-functions', url_for('.l_function_top_page'))] elif L.Ltype() == "hgmQ": # The /L/ trick breaks down for motives, # because we have a scheme for the L-functions themselves newlink = friendlink.rpartition('t') friendlink = newlink[0]+'/t'+newlink[2] friends = [('Hypergeometric motive ', friendlink)] if L.degree <= 4: bread = get_bread(L.degree, [(L.label, request.path)]) else: bread = [('L-functions', url_for('.l_function_top_page'))] elif L.Ltype() == 'SymmetricPower': def ordinal(n): if n == 2: return "Square" elif n == 3: return "Cube" elif 10 <= n % 100 < 20: return str(n) + "th Power" else: return str(n) + {1: 'st', 2: 'nd', 3: 'rd'}.get(n % 10, "th") + " Power" if L.m == 2: bread = get_bread(3, [("Symmetric square of Elliptic curve", url_for('.l_function_ec_sym2_browse_page')), (L.label, url_for('.l_function_ec_sym_page_label', label=L.label,power=L.m))]) elif L.m == 3: bread = get_bread(4, [("Symmetric Cube of Elliptic Curve", url_for('.l_function_ec_sym3_browse_page')), (L.label, url_for('.l_function_ec_sym_page_label', label=L.label,power=L.m))]) else: bread = [('L-functions', url_for('.l_function_top_page')), ('Symmetric %s of Elliptic Curve ' % ordinal(L.m) + str(L.label), url_for('.l_function_ec_sym_page_label', label=L.label,power=L.m))] friendlink = request.path.replace('/L/SymmetricPower/%d/' % L.m, '/') splitlink = friendlink.rpartition('/') friendlink = splitlink[0] + splitlink[2] friendlink2 = request.path.replace('/L/SymmetricPower/%d/' % L.m, '/L/') splitlink = friendlink2.rpartition('/') friendlink2 = splitlink[0] + splitlink[2] friends = [('Isogeny class ' + L.label, friendlink), ('Symmetric 1st Power', friendlink2)] for j in range(2, L.m + 2): if j != L.m: friendlink3 = request.path.replace('/L/SymmetricPower/%d/' % L.m, '/L/SymmetricPower/%d/' % j) friends.append(('Symmetric %s' % ordinal(j), friendlink3)) elif L.Ltype() in ['lcalcurl', 'lcalcfile']: if L.degree <= 4: bread = get_bread(L.degree, []) else: bread = [('L-functions', url_for('.l_function_top_page'))] elif L.Ltype() == "general": bread = L.bread origins = L.origins friends = L.friends factors = L.factors instances = L.instances return (bread, origins, friends, factors, instances)
def texname(self): from lmfdb.WebCharacter import WebDirichlet return WebDirichlet.char2tex(self.modulus, self.number)
def initLfunction(L, args, request): ''' Sets the properties to show on the homepage of an L-function page. ''' info = {'title': L.title} try: info['citation'] = L.citation except AttributeError: info['citation'] = "" try: info['support'] = L.support except AttributeError: info['support'] = "" info['Ltype'] = L.Ltype() # Here we should decide which values are indeed special values # According to Brian, odd degree has special value at 1, and even # degree has special value at 1/2. # (however, I'm not sure this is true if L is not primitive -- GT) # Now we usually display both if L.Ltype() != "artin" or (L.Ltype() == "artin" and L.sign != 0): # if is_even(L.degree) : # info['sv12'] = specialValueString(L, 0.5, '1/2') # if is_odd(L.degree): # info['sv1'] = specialValueString(L, 1, '1') info['sv1'] = specialValueString(L, 1, '1') info['sv12'] = specialValueString(L, 0.5, '1/2') info['args'] = args info['credit'] = L.credit # info['citation'] = L.citation try: info['factorization'] = L.factorization except: pass try: info['url'] = L.url except: info['url'] = '' info['degree'] = int(L.degree) info['zeroeslink'] = (request.url.replace('/L/', '/L/Zeros/').replace( '/Lfunction/', '/L/Zeros/').replace('/L-function/', '/L/Zeros/') ) # url_for('zeroesLfunction', **args) info['plotlink'] = ( request.url.replace('/L/', '/L/Plot/').replace( '/Lfunction/', '/L/Plot/').replace('/L-function/', '/L/Plot/') ) # info['plotlink'] = url_for('plotLfunction', **args) info['bread'] = [] info['properties2'] = set_gaga_properties(L) # Create friendlink by removing 'L/' and ending '/' friendlink = request.url.replace('/L/', '/').replace('/L-function/', '/').replace( '/Lfunction/', '/') splitlink = friendlink.rpartition('/') friendlink = splitlink[0] + splitlink[2] logger.debug(L.Ltype()) if L.Ltype() == 'maass': if L.group == 'GL2': minNumberOfCoefficients = 100 # TODO: Fix this to take level into account if len(L.dirichlet_coefficients) < minNumberOfCoefficients: info['zeroeslink'] = '' info['plotlink'] = '' info['bread'] = get_bread( 2, [('Maass Form', url_for('.l_function_maass_browse_page')), ('\(' + L.texname + '\)', request.url)]) info['friends'] = [('Maass Form ', friendlink)] else: info['bread'] = get_bread( L.degree, [('Maass Form', url_for('.l_function_maass_gln_browse_page', degree='degree' + str(L.degree))), (L.dbid, request.url)]) elif L.Ltype() == 'riemann': info['bread'] = get_bread(1, [('Riemann Zeta', request.url)]) info['friends'] = [('\(\mathbb Q\)', url_for('number_fields.by_label', label='1.1.1.1')), ('Dirichlet Character \(\\chi_{1}(1,\\cdot)\)', url_character(type='Dirichlet', modulus=1, number=1))] elif L.Ltype() == 'dirichlet': mod, num = L.charactermodulus, L.characternumber Lpattern = r"\(L(s,\chi_{%s}(%s,·))\)" if mod > 1: pmod, pnum = WebDirichlet.prevprimchar(mod, num) Lprev = (Lpattern % (pmod, pnum), url_for('.l_function_dirichlet_page', modulus=pmod, number=pnum)) else: Lprev = ('', '') nmod, nnum = WebDirichlet.nextprimchar(mod, num) Lnext = (Lpattern % (nmod, nnum), url_for('.l_function_dirichlet_page', modulus=nmod, number=nnum)) info['navi'] = (Lprev, Lnext) snum = str(L.characternumber) smod = str(L.charactermodulus) charname = WebDirichlet.char2tex(smod, snum) info['bread'] = get_bread(1, [(charname, request.url)]) info['friends'] = [('Dirichlet Character ' + str(charname), friendlink) ] elif L.Ltype() == 'ellipticcurveQ': label = L.label while friendlink[len(friendlink) - 1].isdigit( ): # Remove any number at the end to get isogeny class url friendlink = friendlink[0:len(friendlink) - 1] info['friends'] = [('Isogeny class ' + label, friendlink)] for i in range(1, L.nr_of_curves_in_class + 1): info['friends'].append( ('Elliptic curve ' + label + str(i), friendlink + str(i))) if L.modform: info['friends'].append( ('Modular form ' + label.replace('.', '.2'), url_for("emf.render_elliptic_modular_forms", level=L.modform['level'], weight=2, character=0, label=L.modform['iso']))) info['friends'].append(('L-function ' + label.replace('.', '.2'), url_for('.l_function_emf_page', level=L.modform['level'], weight=2, character=0, label=L.modform['iso'], number=0))) info['friends'].append(('Symmetric square L-function', url_for(".l_function_ec_sym_page", power='2', label=label))) info['friends'].append(('Symmetric cube L-function', url_for(".l_function_ec_sym_page", power='3', label=label))) info['bread'] = get_bread( 2, [('Elliptic curve', url_for('.l_function_ec_browse_page')), (label, url_for('.l_function_ec_page', label=label))]) elif L.Ltype() == 'ellipticmodularform': friendlink = friendlink + L.addToLink # Strips off the embedding friendlink = friendlink.rpartition('/')[0] # number for the L-function if L.character: info['friends'] = [ ('Modular form ' + str(L.level) + '.' + str(L.weight) + '.' + str(L.character) + str(L.label), friendlink) ] else: info['friends'] = [('Modular form ' + str(L.level) + '.' + str(L.weight) + str(L.label), friendlink)] if L.ellipticcurve: info['friends'].append(('EC isogeny class ' + L.ellipticcurve, url_for("by_ec_label", label=L.ellipticcurve))) info['friends'].append( ('L-function ' + str(L.level) + '.' + str(L.label), url_for('.l_function_ec_page', label=L.ellipticcurve))) for i in range(1, L.nr_of_curves_in_class + 1): info['friends'].append( ('Elliptic curve ' + L.ellipticcurve + str(i), url_for("by_ec_label", label=L.ellipticcurve + str(i)))) info['friends'].append(('Symmetric square L-function', url_for(".l_function_ec_sym_page", power='2', label=label))) info['friends'].append(('Symmetric cube L-function', url_for(".l_function_ec_sym_page", power='3', label=label))) elif L.Ltype() == 'hilbertmodularform': friendlink = '/'.join(friendlink.split('/')[:-1]) info['friends'] = [('Hilbert Modular Form', friendlink.rpartition('/')[0])] elif L.Ltype() == 'dedekindzeta': info['friends'] = [('Number Field', friendlink)] elif L.Ltype() in ['lcalcurl', 'lcalcfile']: info['bread'] = [('L-functions', url_for('.l_function_top_page'))] elif L.Ltype() == 'SymmetricPower': def ordinal(n): if n == 2: return "Square" elif n == 3: return "Cube" elif 10 <= n % 100 < 20: return str(n) + "th Power" else: return str(n) + { 1: 'st', 2: 'nd', 3: 'rd' }.get(n % 10, "th") + " Power" if L.m == 2: info['bread'] = get_bread(3, [ ("Symmetric square of Elliptic curve", url_for('.l_function_ec_sym2_browse_page')), (L.label, url_for('.l_function_ec_sym_page', label=L.label, power=L.m)) ]) elif L.m == 3: info['bread'] = get_bread(4, [ ("Symmetric cube of Elliptic curve", url_for('.l_function_ec_sym3_browse_page')), (L.label, url_for('.l_function_ec_sym_page', label=L.label, power=L.m)) ]) else: info['bread'] = [ ('L-functions', url_for('.l_function_top_page')), ('Symmetric %s of Elliptic curve ' % ordinal(L.m) + str(L.label), url_for('.l_function_ec_sym_page', label=L.label, power=L.m)) ] friendlink = request.url.replace('/L/SymmetricPower/%d/' % L.m, '/') splitlink = friendlink.rpartition('/') friendlink = splitlink[0] + splitlink[2] friendlink2 = request.url.replace('/L/SymmetricPower/%d/' % L.m, '/L/') splitlink = friendlink2.rpartition('/') friendlink2 = splitlink[0] + splitlink[2] info['friends'] = [('Isogeny class ' + L.label, friendlink), ('Symmetric 1st Power', friendlink2)] for j in range(2, L.m + 2): if j != L.m: friendlink3 = request.url.replace( '/L/SymmetricPower/%d/' % L.m, '/L/SymmetricPower/%d/' % j) info['friends'].append( ('Symmetric %s' % ordinal(j), friendlink3)) elif L.Ltype() == 'siegelnonlift' or L.Ltype( ) == 'siegeleisenstein' or L.Ltype( ) == 'siegelklingeneisenstein' or L.Ltype() == 'siegelmaasslift': weight = str(L.weight) number = str(L.number) info['friends'] = [('Siegel Modular Form', friendlink)] elif L.Ltype() == "artin": # info['zeroeslink'] = '' # info['plotlink'] = '' info['friends'] = [('Artin representation', L.artin.url_for())] if L.sign == 0: # The root number is now unknown info['zeroeslink'] = '' info['plotlink'] = '' info['dirichlet'] = lfuncDStex(L, "analytic") info['eulerproduct'] = lfuncEPtex(L, "abstract") info['functionalequation'] = lfuncFEtex(L, "analytic") info['functionalequationSelberg'] = lfuncFEtex(L, "selberg") if len(request.args) == 0: lcalcUrl = request.url + '?download=lcalcfile' else: lcalcUrl = request.url + '&download=lcalcfile' info['downloads'] = [('Lcalcfile', lcalcUrl)] return info