def pyfxcor(inspec, template, vmin=-200., vmax=200., res=3, rej=1000):
    rv, cc = pyasl.crosscorrRV(inspec[0],
                               inspec[1],
                               template[0],
                               template[1],
                               vmin,
                               vmax,
                               res,
                               skipedge=rej)

    cen_gs = np.argmax(cc)
    perfx, perfy = rv[cen_gs - 5:cen_gs + 6], cc[cen_gs - 5:cen_gs + 6]

    try:
        gauss = ConstantModel() + GaussianModel()
        pars = gauss.make_params()
        pars['center'].set(value=rv[np.argmax(cc)], vary=True)
        pars['amplitude'].set(value=max(cc), vary=True)
        pars['sigma'].set(vary=True)
        pars['c'].set(value=0, vary=True)
        out = gauss.fit(perfy, pars, x=perfx)
        ct = out.best_values['center']
        cterr = out.params['center'].stderr
    except:
        return 'error', ''

    return ct, cterr
예제 #2
0
def Rectangle(signal, guess):
    
    if guess == False:
        return [0, 0, 0]
    else:
        amp, centre, stdev, offset = guess
        
        data = np.array([range(len(signal)), signal]).T
        X = data[:,0]
        Y = data[:,1]

        step_mod = Rectangle()
        const_mod = ConstantModel()
        
        pars = step_mod.guess(Y, x=X, center=centre)
        pars += const_mod.guess(Y, x=X)

        mod = step_mod + const_mod
        result = mod.fit(Y, pars, x=X)
        # write error report
        #print result.fit_report()
        fwhm = result.best_values['sigma'] * 2.3548
        print fwhm
        
    return X, result.best_fit, result.redchi, 0
예제 #3
0
def gauss_step_const(signal, guess):
    """
    Fits high contrast data very well
    """
    if guess == False:
        return [0, 0]
    else:
        amp, centre, stdev, offset = guess
        
        data = np.array([range(len(signal)), signal]).T
        X = data[:,0]
        Y = data[:,1]

#         gauss_mod = Model(gaussian)
        gauss_mod = Model(gaussian)
        const_mod = ConstantModel()
        step_mod = StepModel(prefix='step')
        
        pars = gauss_mod.make_params(height=amp, center=centre, width=stdev / 3., offset=offset)
#         pars = gauss_mod.make_params(amplitude=amp, center=centre, sigma=stdev / 3.)
        gauss_mod.set_param_hint('sigma', value = stdev / 3., min=stdev / 2., max=stdev)
        pars += step_mod.guess(Y, x=X, center=centre)

        pars += const_mod.guess(Y, x=X)
    
        
        mod = const_mod + gauss_mod + step_mod
        result = mod.fit(Y, pars, x=X)
        # write error report
        #print result.fit_report()
        print "contrast fit", result.redchi
    
    return X, result.best_fit, result.redchi
def GaussConst(signal, guess):
    
    amp, centre, stdev, offset = guess
    
    data = np.array([range(len(signal)), signal]).T
    X = data[:,0]
    Y = data[:,1]

    gauss_mod = GaussianModel(prefix='gauss_')
    const_mod = ConstantModel(prefix='const_')
    
    pars = gauss_mod.make_params(center=centre, sigma=stdev, amplitude=amp)
    pars += const_mod.guess(Y, x=X)
    pars['gauss_center'].min = centre - 5.
    pars['gauss_center'].max = centre + 5.
    pars['gauss_sigma'].max = stdev + 5.
    
    mod = gauss_mod + const_mod
    result = mod.fit(Y, pars, x=X)
    
    fwhm = result.best_values['gauss_sigma'] #* 2.3548
    centr = result.best_values['gauss_center']
    
    # Values within two stdevs i.e. 95%
    pl.plot(np.repeat(centr - fwhm * 2, len(Y)),
            np.arange(len(Y)), 'b-')
    pl.plot(np.repeat(centr + fwhm * 2, len(Y)),
            np.arange(len(Y)), 'b-')
    
    return X, result.best_fit, result.best_values['gauss_sigma'] * 4
def Box(signal, guess):
    
    amp, centre, stdev, offset = guess
    
    data = np.array([range(len(signal)), signal]).T
    X = data[:,0]
    Y = data[:,1]

    gauss_mod = RectangleModel(prefix='gauss_', mode='logistic')
    const_mod = ConstantModel(prefix='const_')
    
    pars = gauss_mod.make_params( center1=centre-stdev*3, center2=centre+stdev*3, sigma1=0, sigma2=0, amplitude=amp)
    pars += const_mod.guess(Y, x=X)
    pars['gauss_center1'].min = centre-stdev*3 - 3
    pars['gauss_center2'].max = centre-stdev*3 + 3
    pars['gauss_center2'].min = centre+stdev*3 - 3
    pars['gauss_center2'].max = centre+stdev*3 + 3
    
    mod = gauss_mod + const_mod
    result = mod.fit(Y, pars, x=X)
    
    c1 = result.best_values['gauss_center1']
    c2 = result.best_values['gauss_center2']
    
    pl.legend()
    
    return X, result.best_fit, c2-c1
def GaussConst(signal, guess):

    amp, centre, stdev, offset = guess

    data = np.array([range(len(signal)), signal]).T
    X = data[:, 0]
    Y = data[:, 1]

    gauss_mod = GaussianModel(prefix='gauss_')
    const_mod = ConstantModel(prefix='const_')

    pars = gauss_mod.make_params(center=centre, sigma=stdev, amplitude=amp)
    pars += const_mod.guess(Y, x=X)
    pars['gauss_center'].min = centre - 5.
    pars['gauss_center'].max = centre + 5.
    pars['gauss_sigma'].max = stdev + 5.

    mod = gauss_mod + const_mod
    result = mod.fit(Y, pars, x=X)

    fwhm = result.best_values['gauss_sigma']  #* 2.3548
    centr = result.best_values['gauss_center']

    # Values within two stdevs i.e. 95%
    pl.plot(np.repeat(centr - fwhm * 2, len(Y)), np.arange(len(Y)), 'b-')
    pl.plot(np.repeat(centr + fwhm * 2, len(Y)), np.arange(len(Y)), 'b-')

    return X, result.best_fit, result.best_values['gauss_sigma'] * 4
def Box(signal, guess):

    amp, centre, stdev, offset = guess

    data = np.array([range(len(signal)), signal]).T
    X = data[:, 0]
    Y = data[:, 1]

    gauss_mod = RectangleModel(prefix='gauss_', mode='logistic')
    const_mod = ConstantModel(prefix='const_')

    pars = gauss_mod.make_params(center1=centre - stdev * 3,
                                 center2=centre + stdev * 3,
                                 sigma1=0,
                                 sigma2=0,
                                 amplitude=amp)
    pars += const_mod.guess(Y, x=X)
    pars['gauss_center1'].min = centre - stdev * 3 - 3
    pars['gauss_center2'].max = centre - stdev * 3 + 3
    pars['gauss_center2'].min = centre + stdev * 3 - 3
    pars['gauss_center2'].max = centre + stdev * 3 + 3

    mod = gauss_mod + const_mod
    result = mod.fit(Y, pars, x=X)

    c1 = result.best_values['gauss_center1']
    c2 = result.best_values['gauss_center2']

    pl.legend()

    return X, result.best_fit, c2 - c1
예제 #8
0
def GaussConst(signal, guess):
    
    if guess == False:
        return [0, 0, 0]
    else:
        amp, centre, stdev, offset = guess
        
        data = np.array([range(len(signal)), signal]).T
        X = data[:,0]
        Y = data[:,1]

        gauss_mod = GaussianModel(prefix='gauss_')
        const_mod = ConstantModel(prefix='const_')
        
        #pars = lorentz_mod.make_params(amplitude=amp, center=centre, sigma=stdev / 3.)
        #lorentz_mod.set_param_hint('sigma', value = stdev / 3., min=0., max=stdev)
        
        pars = gauss_mod.guess(Y, x=X, center=centre, sigma=stdev / 3., amplitude=amp)
        #pars += step_mod.guess(Y, x=X, center=centre)
        pars += const_mod.guess(Y, x=X)
        
        pars['gauss_sigma'].vary = False
        mod = gauss_mod + const_mod
        result = mod.fit(Y, pars, x=X)
        # write error report
        #print result.fit_report()
        fwhm = result.best_values['gauss_sigma'] * 2.3548

        
    return X, result.best_fit, result.redchi, fwhm
예제 #9
0
def fit_peaks(
    x,
    y,
    peak_pos,
    bg="constant",
    sigma_guess=2,
    center_pm=20,
    sigma_min=0.5,
    amplitude_max_m=3.0,
    bg_pm=100,
):
    mod = ConstantModel()

    for i, p in enumerate(peak_pos):
        mod += LorentzianModel(prefix="p%s_" % i)

    pars = mod.make_params()

    for i, p in enumerate(peak_pos):
        pars["p%s_center" % i].set(p, min=p - center_pm, max=p + center_pm)
        pars["p%s_sigma" % i].set(sigma_guess, min=sigma_min)
        # pars['p%s_amplitude' % i].set(10**2, min=0.0)
        pars["p%s_amplitude" % i].set(
            amplitude_max_m * y[find_nearest_index(x, p)], min=0.0
        )

    pars["c"].set(0, min=-1 * bg_pm, max=bg_pm)

    out = mod.fit(y, pars, x=x, method="leastsq")
    out.peak_pos = peak_pos
    return out
예제 #10
0
def fitgaussian_sample(sample, components, svg, verbose, center, cmin, cmax,
                       amp, amin, sigma, smin):
    '''Fits gaussian curve to dyad coverage for a single sample.'''
    print('Fits gaussian curve to dyad coverage of sample {}'.format(sample))
    input = sample + '-dyad.txt'
    dyads = pd.read_csv(input, sep='\t', index_col=0, comment='#')
    x = dyads.index.values
    y = dyads['Relative Frequency'].values
    if not amp:
        amp = dyads['Relative Frequency'].max() * 100
    if not center:
        center = 0.0
    if not sigma:
        sigma = dyads.index.max() / 2
    plt.figure()
    plt.title(sample)
    plt.xlabel('Position relative to dyad (bp)')
    plt.ylabel('Relative Frequency')
    plt.xlim(x[0], x[len(x) - 1])
    plt.xticks(list(range(x[0], x[len(x) - 1] + 1, 25)))
    plt.plot(dyads.index.values,
             dyads['Relative Frequency'].values,
             color='red')
    plot_output = sample + '-dyad-gaussian.png'
    try:
        constant = ConstantModel(prefix='c_')
        pars = constant.make_params()
        pars['c_c'].set(value=dyads['Relative Frequency'].min(),
                        min=0.0,
                        max=dyads['Relative Frequency'].max())
        gauss = GaussianModel(prefix='g_')
        pars.update(gauss.make_params())
        pars['g_center'].set(value=center, min=cmin, max=cmax)
        pars['g_sigma'].set(value=sigma, min=smin)
        pars['g_amplitude'].set(value=amp, min=amin)
        mod = constant + gauss
        init = mod.eval(pars, x=x)
        out = mod.fit(y, pars, x=x)
        if components:
            plt.plot(x, init, 'b--', label='Initial fit')
        if verbose:
            print(out.fit_report(min_correl=0.5))
        plt.plot(x, out.best_fit, 'b-', label='Best fit')
        if components:
            comps = out.eval_components(x=x)
            plt.plot(x,
                     np.repeat(comps['c_'], len(x)),
                     'g--',
                     label='Constant component')
            plt.plot(x, comps['g_'], 'm--', label='Gaussian component')
    except Exception as e:
        logging.warning(
            'could not fit gaussian curve to sample {}'.format(sample), e)
    if components:
        plt.legend(loc='lower right')
    plt.savefig(plot_output)
    if svg:
        plot_svg_output = sample + '-dyad-gaussian.svg'
        plt.savefig(plot_svg_output, transparent=True)
    plt.close()
def FWHM(counts, lower_bound, upper_bound):
    X = range(lower_bound, upper_bound)
    Y = counts[lower_bound:upper_bound]
    # Fit a guassian
    mean = sum(X * Y) / sum(Y)
    sigma = np.sqrt(sum(Y * (X - mean)**2) / sum(Y))
    #    pi = [max(Y),mean,sigma]
    #    popt, pcov = curve_fit(gauss, X, Y, p0=pi)
    #    print(popt)
    #    fit_a, fit_mu, fit_stdev = popt
    # fit guassian using other method
    model = GaussianModel(prefix='peak_') + ConstantModel()
    # make a model that is a Gaussian + a constant:
    model = GaussianModel(prefix='peak_') + ConstantModel()

    # make parameters with starting values:
    params = model.make_params(c=1.0,
                               peak_center=mean,
                               peak_sigma=sigma,
                               peak_amplitude=max(Y))
    # run fit
    result = model.fit(Y, params, x=X)
    print('fwhm: ', result.params['peak_fwhm'].value, 'centroid: ',
          result.params['peak_center'].value)
    # find FWHM
    #    fwhm = 2*np.sqrt(2*np.log(2))*np.abs(fit_stdev)
    #    cent = fit_mu
    return result.params['peak_fwhm'].value, result.params['peak_center'].value
def fit_s21mag(x_val, y_val):
    peak = GaussianModel()
    offset = ConstantModel()
    model = peak + offset
    pars = offset.make_params(c=np.median(y_val))
    pars += peak.guess(y_val, x=x_val, amplitude=-0.5)
    result = model.fit(y_val, pars, x=x_val)
    return result
예제 #13
0
    def model(self):
        """Returns the sum of all peak models."""
        model = ConstantModel(prefix="BASE_")
        model.set_param_hint("c", vary=False, value=0)
        self.params += model.make_params()

        for peak in self._peaks:
            model += peak.model
        return model
예제 #14
0
 def __init__(self, nexp=0, sum_one=False):
     self.sum_one_flag = sum_one
     self.model = ConstantModel()
     self.nexp = 0
     self.errors = None
     self.params = None
     self.res = None
     for _ in range(nexp):
         self.add_exp()
예제 #15
0
파일: exp_model.py 프로젝트: dubinnyi/relax
 def __init__(self, nexp=0, moddef=" "):
     self.definition = moddef
     self.model = ConstantModel()
     self.nexp = 0
     self.errors = None
     self.params = None
     self.res = None
     for _ in range(nexp):
         self.add_exp()
예제 #16
0
def fitNpeaks(f,
              y,
              npeaks=5,
              thres=0.02,
              min_dist=5,
              width=300,
              plot_prefix=None,
              model=SkewedGaussianModel,
              offset=True):

    # Guess initial peak centres using peakutils
    indexes = peakutils.indexes(y, thres=thres, min_dist=min_dist)
    peaksfound = len(indexes)
    assert peaksfound >= npeaks, "Looking for %s or more peaks only found %s of them!" % (
        npeaks, peaksfound)
    peak_f = peakutils.interpolate(f, y, ind=indexes)

    # Oder peaks by decreaing height and keep only the first npeaks
    peak_heights = indexes
    peak_order = peak_heights.argsort()[::-1]
    peak_heights = peak_heights[peak_order[:npeaks]]
    peak_f = peak_f[peak_order[:npeaks]]
    amplitude_scale = 1.0
    peak_amplitudes = peak_heights * amplitude_scale  # This is lmfit's annoying definition of a Gaussian `amplitude'
    print('Initial peaks guessed at ', peak_f)

    # Make multipeak model
    peaks = []
    for i in range(npeaks):
        prefix = 'g{:d}_'.format(i + 1)
        peaks.append(model(prefix=prefix))
        if i == 0:
            pars = peaks[i].make_params(x=f)
        else:
            pars.update(peaks[i].make_params())
        if model == SkewedGaussianModel:
            pars[prefix + 'center'].set(peak_f[i], min=f.min(), max=f.max())
            pars[prefix + 'sigma'].set(width, min=0.1 * width, max=10 * width)
            pars[prefix + 'gamma'].set(0, min=-5, max=5)
            pars[prefix + 'amplitude'].set(peak_amplitudes[i])
        elif model == GaussianModel:
            pars[prefix + 'center'].set(peak_f[i], min=f.min(), max=f.max())
            pars[prefix + 'sigma'].set(width, min=0.1 * width, max=10 * width)
            pars[prefix + 'amplitude'].set(peak_amplitudes[i])
    model = peaks[0]
    for i in range(1, npeaks):
        model += peaks[i]

    if offset:
        model += ConstantModel()
        pars.update(ConstantModel().make_params())
        pars['c'].set(0)
    # Fit first spectrum, creating the ModelResult object which will be used over and over
    fit = model.fit(y, pars, x=f)
    return fit
예제 #17
0
def fit_s21mag(x_val, y_val):
    x_val_midpoint = int(np.round(len(x_val) / 2))
    peak = GaussianModel()
    offset = ConstantModel()
    model = peak + offset
    pars = offset.make_params(c=np.median(y_val))
    pars += peak.guess(y_val,
                       x=x_val,
                       amplitude=-0.05,
                       center=x_val[x_val_midpoint])
    result = model.fit(y_val, pars, x=x_val)
    return result
예제 #18
0
def make_gaussian_model(self):
    """ This method creates a model of a gaussian with an offset.

    @return tuple: (object model, object params)

    Explanation of the objects:
        object lmfit.model.CompositeModel model:
            A model the lmfit module will use for that fit. Here a
            gaussian model. Returns an object of the class
            lmfit.model.CompositeModel.

        object lmfit.parameter.Parameters params:
            It is basically an OrderedDict, so a dictionary, with keys
            denoting the parameters as string names and values which are
            lmfit.parameter.Parameter (without s) objects, keeping the
            information about the current value.
            The used model has the Parameter with the meaning:
                'amplitude' : amplitude
                'center'    : center
                'sigm'      : sigma
                'fwhm'      : full width half maximum
                'c'         : offset

    For further information have a look in:
    http://cars9.uchicago.edu/software/python/lmfit/builtin_models.html#models.GaussianModel
    """

    model = GaussianModel() + ConstantModel()
    params = model.make_params()

    return model, params
예제 #19
0
def model_at_depth(tree, depth, property_name):
    r"""Generate a fit model at a particular tree depth

    Parameters
    ----------
    tree : :class:`~idpflex.cnextend.Tree`
        Hierarchical tree
    depth: int
        depth level, starting from the tree's root (depth=0)
    property_name : str
        Name of the property to create the model for

    Returns
    -------
    :class:`~lmfit.model.CompositeModel`
        A model composed of a :class:`~idpflex.bayes.TabulatedFunctionModel`
        for each node plus a :class:`~lmfit.models.ConstantModel` accounting
        for a flat background
    """  # noqa: E501
    mod = ConstantModel()
    for node in tree.nodes_at_depth(depth):
        p = node[property_name]
        m = TabulatedFunctionModel(p.x, p.y, prefix='n{}_'.format(node.id))
        m.set_param_hint('center', vary=False)
        m.set_param_hint('amplitude', value=1.0 / (1 + depth))
        mod += m
    return mod
예제 #20
0
def fit_s21mag(x_val, y_val):
    peak = LorentzianModel()
    offset = ConstantModel()
    model = peak
    pars = peak.guess(y_val, x=x_val, amplitude=-0.05)
    result = model.fit(y_val, pars, x=x_val)
    return result
예제 #21
0
파일: fit.py 프로젝트: 9dogs/edp
def fit_peak_df(df, model=GaussianModel, params=None, fit_range=(-np.inf, np.inf), x_field=None, fit_field='nphe2_mean', out_field='peak_fit'):
    """
    Fits DataFrame with selected peak model. Appends residuals column to DataFrame.
    """
    # Data
    fit_min, fit_max = fit_range

    df_ranged = df[(df.index > fit_min) & (df.index < fit_max)]

    if x_field:
        x = np.array(df_ranged[x_field])
        full_x = np.array(df[x_field])
    else:
        x = np.array(df_ranged.index.get_values())
        full_x = np.array(df.index.get_values())

    y = np.array(df_ranged[fit_field].values)
    full_y = np.array(df[fit_field].values)

    # Models
    if isinstance(model, str):
        try:
            model = PEAK_MODELS[model]
        except KeyError:
            print("Undefined model: {}, using default".format(model))

    peak_mod = model(prefix='peak_')
    const_mod = ConstantModel(prefix='const_')
    result_model = const_mod + peak_mod

    # Parameters
    if not params:
        pars = const_mod.make_params(c=y.min())
        pars += peak_mod.guess(y, x=x, center=0)
    else:
        pars = params

    # Fitting
    result = result_model.fit(y, params=pars, x=x)

    peak_eval = result.eval(x=full_x)
    y_res = full_y - peak_eval
    df[out_field] = pd.Series(peak_eval, index=df.index)
    df[out_field + '_res'] = pd.Series(y_res, index=df.index)

    return df, result
예제 #22
0
    def gaussian_fit(self, x, y, paras=None, method=None):
        g1model = GaussianModel(prefix='g1_')
        g2model = GaussianModel(prefix='g2_')
        g3model = GaussianModel(prefix='g3_')
        cmodel = ConstantModel()

        paras_fit = g1model.guess(data=y, x=x)
        paras_fit.update(g2model.make_params())
        paras_fit.update(g3model.make_params())

        paras_fit['g1_amplitude'].set(min=0.)
        paras_fit['g2_amplitude'].set(min=0.)
        paras_fit['g3_amplitude'].set(min=0.)

        paras_fit['g1_center'].set(min=paras['g1_center'] - 300.,
                                   value=paras['g1_center'],
                                   max=paras['g1_center'] + 300.)
        paras_fit['g2_center'].set(min=paras['g2_center'] - 300.,
                                   value=paras['g2_center'],
                                   max=paras['g2_center'] + 300.)
        paras_fit['g3_center'].set(min=paras['g3_center'] - 300.,
                                   value=paras['g3_center'],
                                   max=paras['g3_center'] + 300.)

        paras_fit['g1_sigma'].set(min=100,
                                  value=paras['g1_sigma'],
                                  max=paras['g1_sigma'] + 50.)
        paras_fit['g2_sigma'].set(min=100,
                                  value=paras['g2_sigma'],
                                  max=paras['g2_sigma'] + 50.)
        paras_fit['g3_sigma'].set(min=100,
                                  value=paras['g3_sigma'],
                                  max=paras['g3_sigma'] + 50.)

        paras_fit.update(cmodel.make_params())

        model = g1model + g2model + g3model + cmodel
        result = model.fit(y, x=x, params=paras_fit, mothod=method)

        yfit = result.best_fit
        y_para = result.best_values

        residual = y - yfit

        return yfit, y_para, result, residual
예제 #23
0
def xrf_calib_init_roi(mca, roiname):
    """initial calibration step for MCA:
    find energy locations for one ROI
    """
    if not isLarchMCAGroup(mca):
        print('Not a valid MCA')
        return
    energy = 1.0 * mca.energy
    chans = 1.0 * np.arange(len(energy))
    counts = mca.counts
    bgr = getattr(mca, 'bgr', None)
    if bgr is not None:
        counts = counts - bgr
    if not hasattr(mca, 'init_calib'):
        mca.init_calib = OrderedDict()

    roi = None
    for xroi in mca.rois:
        if xroi.name == roiname:
            roi = xroi
            break
    if roi is None:
        return
    words = roiname.split()
    elem = words[0].title()
    family = 'Ka'
    if len(words) > 1:
        family = words[1].title()
    if family == 'Lb':
        family = 'Lb1'
    try:
        eknown = xray_line(elem, family).energy / 1000.0
    except:
        eknown = 0.001
    llim = max(0, roi.left - roi.bgr_width)
    hlim = min(len(chans) - 1, roi.right + roi.bgr_width)
    segcounts = counts[llim:hlim]
    maxcounts = max(segcounts)
    ccen = llim + np.where(segcounts == maxcounts)[0][0]
    ecen = ccen * mca.slope + mca.offset
    bkgcounts = counts[llim] + counts[hlim]
    if maxcounts < 2 * bkgcounts:
        mca.init_calib[roiname] = (eknown, ecen, 0.0, ccen, None)
    else:
        model = GaussianModel() + ConstantModel()
        params = model.make_params(amplitude=maxcounts,
                                   sigma=(chans[hlim] - chans[llim]) / 2.0,
                                   center=ccen - llim,
                                   c=0.00)
        params['center'].min = -10
        params['center'].max = hlim - llim + 10
        params['c'].min = -10
        out = model.fit(counts[llim:hlim], params, x=chans[llim:hlim])
        ccen = llim + out.params['center'].value
        ecen = ccen * mca.slope + mca.offset
        fwhm = out.params['fwhm'].value * mca.slope
        mca.init_calib[roiname] = (eknown, ecen, fwhm, ccen, out)
예제 #24
0
def test_stepmodel_erf():
    x, y = get_data()
    stepmod = StepModel(form='linear')
    const = ConstantModel()
    pars = stepmod.guess(y, x)
    pars = pars + const.make_params(c=3*y.min())
    mod = stepmod + const

    out = mod.fit(y, pars, x=x)

    assert(out.nfev > 5)
    assert(out.nvarys == 4)
    assert(out.chisqr > 1)
    assert(out.params['c'].value > 3)
    assert(out.params['center'].value > 1)
    assert(out.params['center'].value < 4)
    assert(out.params['amplitude'].value > 50)
    assert(out.params['sigma'].value > 0.2)
    assert(out.params['sigma'].value < 1.5)
예제 #25
0
def test_stepmodel_erf():
    x, y = get_data()
    stepmod = StepModel(form='linear')
    const = ConstantModel()
    pars = stepmod.guess(y, x)
    pars = pars + const.make_params(c=3 * y.min())
    mod = stepmod + const

    out = mod.fit(y, pars, x=x)

    assert (out.nfev > 5)
    assert (out.nvarys == 4)
    assert (out.chisqr > 1)
    assert (out.params['c'].value > 3)
    assert (out.params['center'].value > 1)
    assert (out.params['center'].value < 4)
    assert (out.params['amplitude'].value > 50)
    assert (out.params['sigma'].value > 0.2)
    assert (out.params['sigma'].value < 1.5)
예제 #26
0
def fit_lm_g(x,y,inits): ##https://stackoverflow.com/questions/44573896/python-fit-gaussian-to-noisy-data-with-lmfit
    # gmodel = LorentzianModel()
    # gmodel = VoigtModel()
    gmodel = GaussianModel()
    cmodel = ConstantModel()
    model = gmodel + cmodel
    params = model.make_params(sigma = inits[2], amplitude = inits[0], center  = inits[1])
    result = model.fit(y, params, x=x)
    # print(params)
    return result
예제 #27
0
def make_multiplegaussian_model(self, no_of_gauss=None):
    """ This method creates a model of multiple gaussians with an offset. The
    parameters are: 'amplitude', 'center', 'sigma', 'fwhm' and offset
    'c'. For function see:
    http://cars9.uchicago.edu/software/python/lmfit/builtin_models.html#models.LorentzianModel

    @return lmfit.model.CompositeModel model: Returns an object of the
                                              class CompositeModel
    @return lmfit.parameter.Parameters params: Returns an object of the
                                               class Parameters with all
                                               parameters for the
                                               lorentzian model.
    """

    model = ConstantModel()
    for ii in range(no_of_gauss):
        model += GaussianModel(prefix='gaussian{0}_'.format(ii))

    params = model.make_params()

    return model, params
예제 #28
0
    def abel_invert(self, y_lim, x_range, parameters=None, model=None):
        if model is None:
            # Create the lmfit model
            model = GaussianModel()
            model += ConstantModel()
            params = model.make_params()
            params['c'].set(0.45)
            params['center'].set(0, vary=False)
            params['sigma'].set(min=0.001)
        if parameters is not None:
            for key, value in parameters.items():
                params[key].set(**value)

        f = FloatProgress(min=0.3, max=4.5)
        display(f)

        fit_data = []
        abel_data = []

        xx = x_range
        self.abel_extent = [-xx, xx, y_lim[0], y_lim[1]]
        for yy in np.arange(y_lim[0], y_lim[1], 1 / self.scale):
            f.value = yy
            self.create_lineout(start=(yy, -xx),
                                end=(yy, xx),
                                lineout_width_mm=1 / self.scale)
            # The data obtained by the lineout
            y = self.lo
            x = self.mm
            out = model.fit(y, params, x=x)

            fit_data.append(out.best_fit)
            abel_data.append(
                self.abel_gauss(x, out.best_values['sigma'],
                                out.best_values['amplitude']) *
                10)  #*10 converts from mm^-1 to cm^-1
        # Change the lists to numpy arrays and flip them
        fit_data = np.array(fit_data)[::-1]
        abel_data = np.array(abel_data)[::-1]
        extent = [-x_range, x_range, y_lim[0], y_lim[1]]
        origin = [
            int(len(fit_data) + y_lim[0] * self.scale),
            int(len(fit_data[0]) / 2)
        ]
        self.fit = DMFromArray(fit_data,
                               self.scale,
                               extent=extent,
                               origin=origin)
        self.abel = DMFromArray(abel_data,
                                self.scale,
                                extent=extent,
                                origin=origin)
        return self.fit, self.abel
예제 #29
0
def prepare_model(nexp):
    emodel = ConstantModel() + ExponentialModel(prefix='a') + ExponentialModel(
        prefix='b')
    pars.add('e', value=0, min=0)
    pars.add('cntrl', value=1, min=1 - 1e-5, max=1 + 1e-5)
    pars['cntrl'].expr = 'c'
    pars['cntrl'].vary = True

    expr = '{}amplitude'
    all_expr = ''
    for i in range(1, 1):
        pars['cntrl'].expr += ' + ' + expr.format(Prefixes[i])
    return emodel, pars
def GaussConst(signal, guess):
    """
    Fits a Gaussian function
    Plots fwhm and 2*sigma gap widths for comparison
    with the analytically calculated one
    """
    amp, centre, stdev, offset = guess
    
    data = np.array([range(len(signal)), signal]).T
    X = data[:,0]
    Y = data[:,1]

    gauss_mod = GaussianModel(prefix='gauss_')
    const_mod = ConstantModel(prefix='const_')
    
    pars = gauss_mod.make_params(center=centre, sigma=stdev, amplitude=amp)
    pars += const_mod.guess(Y, x=X)
    pars['gauss_center'].min = centre - 5.
    pars['gauss_center'].max = centre + 5.
    pars['gauss_sigma'].max = stdev + 5.
    
    mod = gauss_mod + const_mod
    result = mod.fit(Y, pars, x=X)
    
    fwhm = result.best_values['gauss_sigma'] #* 2.3548
    centr = result.best_values['gauss_center']
    
    # Values within two stdevs i.e. 95%
    pl.plot(np.repeat(centr - fwhm * 2, len(Y)),
            np.arange(len(Y)), 'b-')
    pl.plot(np.repeat(centr + fwhm * 2, len(Y)),
            np.arange(len(Y)), 'b-', label="Sigma * 2")
    
    pl.plot(np.repeat(centr - fwhm * 2.3548 / 2., len(Y)),
            np.arange(len(Y)), 'y--')
    pl.plot(np.repeat(centr + fwhm * 2.3548 / 2., len(Y)),
            np.arange(len(Y)), 'y--', label="FWHM")
    
    return X, result.best_fit, result.best_values['gauss_sigma'] * 4, centr
예제 #31
0
def Step(signal, guess):
    
    if guess == False:
        return [0, 0, 0]
    else:
        amp, centre, stdev, offset = guess
        
        data = np.array([range(len(signal)), signal]).T
        X = data[:,0]
        Y = data[:,1]

        step_mod = StepModel(prefix='step')
        const_mod = ConstantModel(prefix='const_')
        
        pars = step_mod.guess(Y, x=X, center=centre)
        pars += const_mod.guess(Y, x=X)

        mod = step_mod + const_mod
        result = mod.fit(Y, pars, x=X)
        # write error report
        #print result.fit_report()
        
    return X, result.best_fit, result.redchi, 0
예제 #32
0
def pyfxcor(inspec, template, obj, vmin=-400., vmax=400., res=3, rej=200):
    
    rv, cc = pyasl.crosscorrRV(inspec[0], inspec[1], template[0], template[1],
                               vmin, vmax, res, skipedge=rej)
    
    cen_gs = np.argmax(cc)
    perfx, perfy = rv[cen_gs-5:cen_gs+6], cc[cen_gs-5:cen_gs+6]
    
    try:
        gauss = ConstantModel() + GaussianModel()
        pars = gauss.make_params()
        pars['center'].set(value=rv[np.argmax(cc)], vary=True)
        pars['amplitude'].set(value=max(cc), vary=True)
        pars['sigma'].set(vary=True)
        pars['c'].set(value=0, vary=True)
        out = gauss.fit(perfy, pars, x=perfx)
        ct = out.best_values['center']
        cterr = out.params['center'].stderr
    except:
        plt.plot(inspec[0], inspec[1])
        plt.savefig(obj+'.png', dpi=300)
        pl.clf()
        return 'error', ''
    
    plt.subplot(311)
    plt.plot(rv, cc)
    curraxlim = plt.axis()
    out.plot_fit(numpoints=100)
    plt.axis(curraxlim)
    plt.subplot(312)
    plt.plot(obj[1][0], obj[1][1], 'r-', linewidth=0.5)
    plt.subplot(313)
    plt.plot(inspec[0], inspec[1], 'b-', linewidth=0.5)
    plt.savefig(obj[0]+'.png', dpi=300)
    plt.clf()
    
    return ct, cterr
예제 #33
0
def GaussStepConst(signal, guess):
    """
    Fits high contrast data very well
    """
    if guess == False:
        return [0, 0, 0]
    else:
        amp, centre, stdev, offset = guess
        
        data = np.array([range(len(signal)), signal]).T
        X = data[:,0]
        Y = data[:,1]

#         gauss_mod = Model(gaussian)
        gauss_mod = Model(gaussian)
        const_mod = ConstantModel()
        step_mod = StepModel(prefix='step')
        
        gauss_mod.set_param_hint('width', value = stdev / 2., min=stdev / 3., max=stdev)
        gauss_mod.set_param_hint('fwhm', expr='2.3548*width')
        pars = gauss_mod.make_params(height=amp, center=centre, width=stdev / 2., offset=offset)
        
        pars += step_mod.guess(Y, x=X, center=centre)

        pars += const_mod.guess(Y, x=X)
        
        pars['width'].vary = False
        
        mod = const_mod + gauss_mod + step_mod
        result = mod.fit(Y, pars, x=X)
        # write error report
        #print result.fit_report()
        
        fwhm = result.best_values['width'] * 2.3548
        
    return X, result.best_fit, result.redchi, fwhm
예제 #34
0
cont = 3.0   # continuum level
randamp = 3. # amplitude of gaussian noise

x   = np.arange(0,xmax)
y   = randamp * np.random.randn(xmax) + jrr.spec.onegaus(x, aa, bb, cc, cont)
err = randamp * np.random.randn(xmax)
plt.plot(x, y, color='black')

# Let's try fitting that gaussian w the python version of MPFIT
p0 = (50., xmax/2, 5, 2)
fa = {'x':x, 'y':y, 'err':err}
m = mpfit.mpfit(myfunct, p0, functkw=fa)
# There has got to be a less kludgy way to do line below
bestfit = jrr.spec.onegaus(x, m.params[0], m.params[1], m.params[2], m.params[3])
plt.plot(x, bestfit, color='blue')


# The same, but with LMFIT
mod1 = GaussianModel()
mod2 = ConstantModel()  # The continuum level
mod = mod1 + mod2
pars = mod1.guess(y, x=x) + mod2.guess(y, x=x)  # This is cool.  It made rough guesses for us.
pars['c'].min = 0  # Set bounds on continuum
pars['c'].max = 10 # Set bounds on continuum
#pars['amplitude'].vary = False  # Fix a parameter
out = mod.fit(y, pars, x=x, weights=1/err**2)  # Fitting is done here.
plt.plot(x, out.best_fit, color='orange')
print(out.fit_report(min_correl=0.25))
plt.show()
# This is actually more elegant.  I think I should learn LMFIT and use it...
def lmfit_mngauss(x,y, *params):
    """
    Fit multiple gaussians from two spectra that are multiplied together

    INPUT:
    x - is the wavelength array
    y - is the normalized flux
    params - is a tuple of 2 list/arrays of initial guess values for the each spectras parameters
             (this controls the number of gaussians to be fitted
                 number of gaussians: len(params)/3 - 3 parameters per Gaussian)
    OUTPUT:
    mod - the lmfit model object used for the fit
    out - the lmfit fit object that contains all the results of the fit
    init- array with the initial guess model (usefull to see the initial guess when plotting)
    """
    
    m_params = params[0]
    
    m_mods = []
    prefixes = []
    for i in range(0, len(m_params), 3):
        pref = "gm%02i_" % (i/3)
        gauss_i = GaussianModel(prefix=pref)

        if i == 0:
            pars = gauss_i.guess(y, x=x)
        else:
            pars.update(gauss_i.make_params())
    
        A = m_params[i]
        l_cen = m_params[i+1]
        sigma = m_params[i+2]

        pars[pref+'amplitude'].set(A)
        pars[pref+'center'].set(l_cen)
        pars[pref+'sigma'].set(sigma)

        m_mods.append(gauss_i)
        prefixes.append(pref)
    
    m_mod = m_mods[0]
    if len(m_mods) > 1:
      for m in m_mods[1:]:
            m_mod += m

    m_one = ConstantModel(prefix="m_one_")
    prefixes.append("m_one_")
    pars.update(m_one.make_params())
    pars['m_one_c'].set(value=1, vary=False)

    try: 
        n_params = params[1]
        n_mods = []
        #prefixes = []
        for j in range(0, len(n_params), 3):
            pref = "gn%02i_" % (j/3)
            gauss_j = GaussianModel(prefix=pref)
            pars.update(gauss_j.make_params())
        
            A = n_params[j]
            l_cen = n_params[j+1]
            sigma = n_params[j+2]

            pars[pref+'amplitude'].set(A)
            pars[pref+'center'].set(l_cen)
            pars[pref+'sigma'].set(sigma)

            n_mods.append(gauss_j)
            prefixes.append(pref)
        
        n_mod = n_mods[0]
        if len(n_mods) > 1:
            for n in n_mods[1:]:
                n_mod += n
        
        n_one = ConstantModel(prefix="n_one_")
        prefixes.append("n_one_")
        pars.update(n_one.make_params())
        pars['n_one_c'].set(value=1, vary=False)

        mod = (m_one + m_mod) * (n_one + n_mod)
    except:
    	print("Error with second spectra, only fitting first")
        mod = m_one + m_mod
    
    

    init = mod.eval(pars, x=x)
    out = mod.fit(y, pars, x=x)
    
    print("Printed prefixes", prefixes)
    #print(init)
    return mod, out, init
예제 #36
0
def call_constant(x, y, ylock):
	const = ConstantModel(prefix='constant_')
	pars = const.guess(y, x=x)
	pars['constant_c'].set(ylock, min=ylock-0.01, max=ylock+0.0001)
	return const, pars
 def CurveFitting(self, frec, Pxx, iaf, ax):
     'Non-Linear Least-Squares Minimization and Curve-Fitting for Python'
     
     # ----- adjusting a model to the obtained PSD -----               
     # model 1: constante
     g1 = ConstantModel(prefix = 'g1_')
     pars = g1.guess(Pxx, x = frec)    
     pars['g1_c'].set(0)
     # model 2: k2/f^-1
     g2 = PowerLawModel(prefix = 'g2_')
     pars += g2.guess(Pxx, x = frec)
     pars['g2_exponent'].set(-1)
     #model 3: probability density function
     g3 = GaussianModel(prefix = 'g3_')
     pars += g3.guess(Pxx, x = frec)
     pars['g3_center'].set(iaf, min = iaf-2, max = iaf+2)
     # model 4: probability density function
     g4 = GaussianModel(prefix = 'g4_')
     pars += g4.guess(Pxx, x = frec)
     pars['g4_center'].set(20, min = 16, max = 25)
     # final model
     gA = g1 + g2 + g3 + g4
     outA = gA.fit(Pxx, pars, x = frec) 
     diffA= np.sum(Pxx - outA.best_fit)        
     gB = g1 + g2 + g3 
     outB = gB.fit(Pxx, pars, x = frec) 
     diffB= np.sum(Pxx - outB.best_fit)
     gC = g1 + g2 
     outC = gC.fit(Pxx, pars, x = frec) 
     diffC= np.sum(Pxx - outC.best_fit)
     diffs= np.abs([diffA, diffB, diffC])
     idx  = np.where(diffs == np.min(diffs))[0][0]
     out  = [outA, outB, outC][idx]
     # ----- plotting the desire PSD -----   
     # original and fitted curves
     ax.plot(frec, Pxx, 'k', linewidth = 2, label = 'PSD')
     ax.plot(frec, out.best_fit, 'b.-', linewidth = 2, markersize = 9, label ='BestModel')
     ax.set_xlim(frec[0], 32)
     ax.set_ylim(ymin = 0)
     ax.tick_params(axis = 'both', labelsize = 16)
     ax.set_xlabel('Frequency [Hz]', fontsize = 'x-large')
     ax.grid()
     # components of the fitted curved
     comps = out.eval_components(x = frec)
     g12 = comps['g1_'] + comps['g2_']
     ax.plot(frec, g12, 'g--', linewidth = 2, label = 'PowerLawModel')      
     idx1, idx2 = np.where(frec >= 5)[0][0], np.where(frec <= 15)[0][-1]
     # final value on the subplot
     if out != outC:
         diffs = out.best_fit[idx1:idx2] - g12[idx1:idx2]
         peak1 = np.amax(diffs)
         idx = np.where(diffs == peak1)[0]
         idx+= len(out.best_fit[:idx1])
         ax.plot((frec[idx],frec[idx]), (g12[idx],out.best_fit[idx]), 'r-o', linewidth = 3, markersize = 9) 
         ax.text(frec[idx], g12[idx], str(np.around(peak1, decimals=2)), horizontalalignment='right', verticalalignment='top', color='r', fontsize='xx-large')
     else:
         peak1 = 0
     # optional valued on the subplot        
     diffs = Pxx[idx1:idx2] - g12[idx1:idx2]
     peak2 = np.amax(diffs)        
     idx = np.where(peak2 == diffs)[0]
     idx+= len(Pxx[:idx1])
     ax.plot((frec[idx],frec[idx]), (g12[idx], Pxx[idx]), 'r-*', linewidth = 3, markersize = 11) 
     ax.text(frec[idx], Pxx[idx], str(np.around(peak2, decimals=2)), horizontalalignment='left', verticalalignment='top', color='r', fontsize='xx-large')
     ax.legend(loc='upper right', shadow=True)
     
     return peak1, peak2