예제 #1
0
def test_pad():
    img = _image()
    assert img.shape[0] == 480
    assert img.shape[1] == 480
    assert img.shape[2] == 3

    augmentor = Pad(100)

    result = augmentor(**{'image': img})
    image = result['image']

    _show_image(image)

    assert image.shape[0] == 680
    assert image.shape[1] == 680
    assert image.shape[2] == 3

    augmentor = Pad((40, 30))

    result = augmentor(**{'image': img})
    image = result['image']

    _show_image(image)

    assert image.shape[0] == 480 + 30 * 2
    assert image.shape[1] == 480 + 40 * 2
    assert image.shape[2] == 3
예제 #2
0
PRE_PROCESSOR = Sequence([Resize(size=IMAGE_SIZE), PerImageStandardization()])
POST_PROCESSOR = None

NETWORK = EasyDict()
NETWORK.OPTIMIZER_CLASS = tf.train.MomentumOptimizer
NETWORK.OPTIMIZER_KWARGS = {"momentum": 0.9}
NETWORK.LEARNING_RATE_FUNC = tf.train.piecewise_constant
NETWORK.LEARNING_RATE_KWARGS = {
    "values": [0.1, 0.01, 0.001, 0.0001],
    "boundaries": [40000, 60000, 80000],
}
NETWORK.IMAGE_SIZE = IMAGE_SIZE
NETWORK.BATCH_SIZE = BATCH_SIZE
NETWORK.DATA_FORMAT = DATA_FORMAT
NETWORK.WEIGHT_DECAY_RATE = 0.0001
NETWORK.ACTIVATION_QUANTIZER = linear_mid_tread_half_quantizer
NETWORK.ACTIVATION_QUANTIZER_KWARGS = {'bit': 2, 'max_value': 2}
NETWORK.WEIGHT_QUANTIZER = binary_mean_scaling_quantizer
NETWORK.WEIGHT_QUANTIZER_KWARGS = {}

# dataset
DATASET = EasyDict()
DATASET.BATCH_SIZE = BATCH_SIZE
DATASET.DATA_FORMAT = DATA_FORMAT
DATASET.PRE_PROCESSOR = PRE_PROCESSOR
DATASET.AUGMENTOR = Sequence([
    Pad(2),
    Crop(size=IMAGE_SIZE),
    FlipLeftRight(),
])
예제 #3
0
NETWORK.OPTIMIZER_KWARGS = {"momentum": 0.9}
NETWORK.LEARNING_RATE_FUNC = tf.train.piecewise_constant
step_per_epoch = int(50000 / (BATCH_SIZE * num_worker))
NETWORK.LEARNING_RATE_KWARGS = {
    "values": ([
        0.01 * num_worker, 0.001 * num_worker, 0.0001 * num_worker,
        0.00001 * num_worker
    ]),
    "boundaries":
    [step_per_epoch * 200, step_per_epoch * 300, step_per_epoch * 350],
}
NETWORK.IMAGE_SIZE = IMAGE_SIZE
NETWORK.BATCH_SIZE = BATCH_SIZE
NETWORK.DATA_FORMAT = DATA_FORMAT
NETWORK.WEIGHT_DECAY_RATE = 0.0005
NETWORK.ACTIVATION_QUANTIZER = linear_mid_tread_half_quantizer
NETWORK.ACTIVATION_QUANTIZER_KWARGS = {'bit': 2, 'max_value': 2}
NETWORK.WEIGHT_QUANTIZER = binary_mean_scaling_quantizer
NETWORK.WEIGHT_QUANTIZER_KWARGS = {}

# dataset
DATASET = EasyDict()
DATASET.BATCH_SIZE = BATCH_SIZE
DATASET.DATA_FORMAT = DATA_FORMAT
DATASET.PRE_PROCESSOR = PRE_PROCESSOR
DATASET.AUGMENTOR = Sequence([
    Pad(4),
    Crop(size=IMAGE_SIZE),
    FlipLeftRight(),
])