def main(network, dataset, config_file, experiment_id, restore_path): environment.init(experiment_id) config = config_util.load_from_experiment() if config_file: config = config_util.merge(config, config_util.load(config_file)) if network: network_class = module_loader.load_network_class(network) config.NETWORK_CLASS = network_class if dataset: dataset_class = module_loader.load_dataset_class(dataset) config.DATASET_CLASS = dataset_class executor.init_logging(config) config_util.display(config) evaluate(config, restore_path)
def run(network, dataset, config_file, experiment_id, recreate): environment.init(experiment_id) config = config_util.load(config_file) if network: network_class = module_loader.load_network_class(network) config.NETWORK_CLASS = network_class if dataset: dataset_class = module_loader.load_dataset_class(dataset) config.DATASET_CLASS = dataset_class config_util.display(config) executor.init_logging(config) executor.prepare_dirs(recreate) config_util.copy_to_experiment_dir(config_file) config_util.save_yaml(environment.EXPERIMENT_DIR, config) start_training(config)