def evaluate_lenet5(learning_rate=0.02, n_epochs=100, emb_size=300, batch_size=50, filter_size=[3], sent_len=40, claim_len=40, cand_size=10, hidden_size=[300, 300], max_pred_pick=5): model_options = locals().copy() print "model options", model_options pred_id2label = {1: 'SUPPORTS', 0: 'REFUTES', 2: 'NOT ENOUGH INFO'} seed = 1234 np.random.seed(seed) rng = np.random.RandomState( seed) #random seed, control the model generates the same results srng = T.shared_randomstreams.RandomStreams(rng.randint(seed)) "load raw data" train_sents, train_sent_masks, train_sent_labels, train_claims, train_claim_mask, train_labels, word2id = load_fever_train( sent_len, claim_len, cand_size) train_3th_sents, train_3th_sent_masks, train_3th_sent_labels, train_3th_claims, train_3th_claim_mask, train_3th_labels, word2id = load_fever_train_NoEnoughInfo( sent_len, claim_len, cand_size, word2id) test_sents, test_sent_masks, test_sent_labels, test_claims, test_claim_mask, test_sent_names, test_ground_names, test_labels, word2id = load_fever_dev( sent_len, claim_len, cand_size, word2id) test_3th_sents, test_3th_sent_masks, test_3th_sent_labels, test_3th_claims, test_3th_claim_mask, test_3th_labels, word2id = load_fever_dev_NoEnoughInfo( sent_len, claim_len, cand_size, word2id) train_sents = np.asarray(train_sents, dtype='int32') train_3th_sents = np.asarray(train_3th_sents, dtype='int32') joint_train_sents = np.concatenate((train_sents, train_3th_sents)) test_sents = np.asarray(test_sents, dtype='int32') test_3th_sents = np.asarray(test_3th_sents, dtype='int32') joint_test_sents = np.concatenate((test_sents, test_3th_sents)) train_sent_masks = np.asarray(train_sent_masks, dtype=theano.config.floatX) train_3th_sent_masks = np.asarray(train_3th_sent_masks, dtype=theano.config.floatX) joint_train_sent_masks = np.concatenate( (train_sent_masks, train_3th_sent_masks)) test_sent_masks = np.asarray(test_sent_masks, dtype=theano.config.floatX) test_3th_sent_masks = np.asarray(test_3th_sent_masks, dtype=theano.config.floatX) joint_test_sent_masks = np.concatenate( (test_sent_masks, test_3th_sent_masks)) train_sent_labels = np.asarray(train_sent_labels, dtype='int32') train_3th_sent_labels = np.asarray(train_3th_sent_labels, dtype='int32') joint_train_sent_labels = np.concatenate( (train_sent_labels, train_3th_sent_labels)) test_sent_labels = np.asarray(test_sent_labels, dtype='int32') test_3th_sent_labels = np.asarray(test_3th_sent_labels, dtype='int32') joint_test_sent_labels = np.concatenate( (test_sent_labels, test_3th_sent_labels)) train_claims = np.asarray(train_claims, dtype='int32') train_3th_claims = np.asarray(train_3th_claims, dtype='int32') joint_train_claims = np.concatenate((train_claims, train_3th_claims)) test_claims = np.asarray(test_claims, dtype='int32') test_3th_claims = np.asarray(test_3th_claims, dtype='int32') joint_test_claims = np.concatenate((test_claims, test_3th_claims)) train_claim_mask = np.asarray(train_claim_mask, dtype=theano.config.floatX) train_3th_claim_mask = np.asarray(train_3th_claim_mask, dtype=theano.config.floatX) joint_train_claim_mask = np.concatenate( (train_claim_mask, train_3th_claim_mask)) test_claim_mask = np.asarray(test_claim_mask, dtype=theano.config.floatX) test_3th_claim_mask = np.asarray(test_3th_claim_mask, dtype=theano.config.floatX) joint_test_claim_mask = np.concatenate( (test_claim_mask, test_3th_claim_mask)) train_labels = np.asarray(train_labels, dtype='int32') train_3th_labels = np.asarray(train_3th_labels, dtype='int32') joint_train_labels = np.concatenate((train_labels, train_3th_labels)) test_labels = np.asarray(test_labels, dtype='int32') test_3th_labels = np.asarray(test_3th_labels, dtype='int32') joint_test_labels = np.concatenate((test_labels, test_3th_labels)) joint_train_size = len(joint_train_claims) joint_test_size = len(joint_test_claims) train_size = len(train_claims) test_size = len(test_claims) test_3th_size = len(test_3th_claims) vocab_size = len(word2id) + 1 print 'joint_train size: ', joint_train_size, ' joint_test size: ', joint_test_size print 'train size: ', train_size, ' test size: ', test_size print 'vocab size: ', vocab_size rand_values = rng.normal( 0.0, 0.01, (vocab_size, emb_size)) #generate a matrix by Gaussian distribution id2word = {y: x for x, y in word2id.iteritems()} word2vec = load_word2vec() rand_values = load_word2vec_to_init(rand_values, id2word, word2vec) init_embeddings = theano.shared( value=np.array(rand_values, dtype=theano.config.floatX), borrow=True ) #wrap up the python variable "rand_values" into theano variable "now, start to build the input form of the model" sents_ids = T.itensor3() #(batch, cand_size, sent_len) sents_mask = T.ftensor3() sents_labels = T.imatrix() #(batch, cand_size) claim_ids = T.imatrix() #(batch, claim_len) claim_mask = T.fmatrix() joint_sents_ids = T.itensor3() #(batch, cand_size, sent_len) joint_sents_mask = T.ftensor3() joint_sents_labels = T.imatrix() #(batch, cand_size) joint_claim_ids = T.imatrix() #(batch, claim_len) joint_claim_mask = T.fmatrix() joint_labels = T.ivector() ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' embed_input_sents = init_embeddings[sents_ids.flatten( )].reshape((batch_size * cand_size, sent_len, emb_size)).dimshuffle( 0, 2, 1 ) #embed_input(init_embeddings, sents_ids_l)#embeddings[sents_ids_l.flatten()].reshape((batch_size,maxSentLen, emb_size)).dimshuffle(0,2,1) #the input format can be adapted into CNN or GRU or LSTM embed_input_claim = init_embeddings[claim_ids.flatten()].reshape( (batch_size, claim_len, emb_size)).dimshuffle(0, 2, 1) conv_W, conv_b = create_conv_para(rng, filter_shape=(hidden_size[0], 1, emb_size, filter_size[0])) att_conv_W, att_conv_b = create_conv_para(rng, filter_shape=(hidden_size[0], 1, emb_size, filter_size[0])) conv_W_context, conv_b_context = create_conv_para( rng, filter_shape=(hidden_size[0], 1, emb_size, 1)) NN_para = [conv_W, conv_b, att_conv_W, att_conv_b, conv_W_context] conv_model_sents = Conv_with_Mask( rng, input_tensor3=embed_input_sents, mask_matrix=sents_mask.reshape( (sents_mask.shape[0] * sents_mask.shape[1], sents_mask.shape[2])), image_shape=(batch_size * cand_size, 1, emb_size, sent_len), filter_shape=(hidden_size[0], 1, emb_size, filter_size[0]), W=conv_W, b=conv_b ) #mutiple mask with the conv_out to set the features by UNK to zero sent_embeddings = conv_model_sents.maxpool_vec #(batch_size*cand_size, hidden_size) # each sentence then have an embedding of length hidden_size batch_sent_emb = sent_embeddings.reshape( (batch_size, cand_size, hidden_size[0])) conv_model_claims = Conv_with_Mask( rng, input_tensor3=embed_input_claim, mask_matrix=claim_mask, image_shape=(batch_size, 1, emb_size, claim_len), filter_shape=(hidden_size[0], 1, emb_size, filter_size[0]), W=conv_W, b=conv_b ) #mutiple mask with the conv_out to set the features by UNK to zero claim_embeddings = conv_model_claims.maxpool_vec #(batch_size, hidden_size) # each sentence then have an embedding of length hidden_size batch_claim_emb = T.repeat(claim_embeddings.dimshuffle(0, 'x', 1), cand_size, axis=1) # concate_claim_sent = T.concatenate([batch_claim_emb,batch_sent_emb ], axis=2) # concate_2_matrix = concate_claim_sent.reshape((batch_size*cand_size, hidden_size[0]*2)) concate_claim_sent = T.concatenate([ batch_claim_emb, batch_sent_emb, T.sum(batch_claim_emb * batch_sent_emb, axis=2).dimshuffle(0, 1, 'x') ], axis=2) concate_2_matrix = concate_claim_sent.reshape( (batch_size * cand_size, hidden_size[0] * 2 + 1)) LR_input = concate_2_matrix LR_input_size = hidden_size[0] * 2 + 1 #classification layer, it is just mapping from a feature vector of size "hidden_size" to a vector of only two values: positive, negative U_a = create_ensemble_para( rng, 1, LR_input_size) # the weight matrix hidden_size*2 # LR_b = theano.shared(value=np.zeros((8,),dtype=theano.config.floatX),name='LR_b', borrow=True) #bias for each target class LR_para = [U_a] # layer_LR=LogisticRegression(rng, input=LR_input, n_in=LR_input_size, n_out=8, W=U_a, b=LR_b) #basically it is a multiplication between weight matrix and input feature vector score_matrix = T.nnet.sigmoid(LR_input.dot(U_a)) #batch * 12 inter_matrix = score_matrix.reshape((batch_size, cand_size)) # inter_sent_claim = T.batched_dot(batch_sent_emb, batch_claim_emb) #(batch_size, cand_size, 1) # inter_matrix = T.nnet.sigmoid(inter_sent_claim.reshape((batch_size, cand_size))) ''' maybe 1.0-inter_matrix can be rewritten into 1/e^(inter_matrix) ''' # prob_pos = T.where( sents_labels < 1, 1.0-inter_matrix, inter_matrix) # loss = -T.mean(T.log(prob_pos)) #f1 as loss batch_overlap = T.sum(sents_labels * inter_matrix, axis=1) batch_recall = batch_overlap / T.sum(sents_labels, axis=1) batch_precision = batch_overlap / T.sum(inter_matrix, axis=1) batch_f1 = 2.0 * batch_recall * batch_precision / (batch_recall + batch_precision) loss = -T.mean(T.log(batch_f1)) # loss = T.nnet.nnet.binary_crossentropy(inter_matrix, sents_labels).mean() ''' training task2, predict 3 labels ''' joint_embed_input_sents = init_embeddings[joint_sents_ids.flatten( )].reshape((batch_size * cand_size, sent_len, emb_size)).dimshuffle( 0, 2, 1 ) #embed_input(init_embeddings, sents_ids_l)#embeddings[sents_ids_l.flatten()].reshape((batch_size,maxSentLen, emb_size)).dimshuffle(0,2,1) #the input format can be adapted into CNN or GRU or LSTM joint_embed_input_claim = init_embeddings[ joint_claim_ids.flatten()].reshape( (batch_size, claim_len, emb_size)).dimshuffle(0, 2, 1) joint_conv_model_sents = Conv_with_Mask( rng, input_tensor3=joint_embed_input_sents, mask_matrix=joint_sents_mask.reshape( (joint_sents_mask.shape[0] * joint_sents_mask.shape[1], joint_sents_mask.shape[2])), image_shape=(batch_size * cand_size, 1, emb_size, sent_len), filter_shape=(hidden_size[0], 1, emb_size, filter_size[0]), W=conv_W, b=conv_b ) #mutiple mask with the conv_out to set the features by UNK to zero joint_sent_embeddings = joint_conv_model_sents.maxpool_vec #(batch_size*cand_size, hidden_size) # each sentence then have an embedding of length hidden_size joint_batch_sent_emb = joint_sent_embeddings.reshape( (batch_size, cand_size, hidden_size[0])) joint_premise_emb = T.sum(joint_batch_sent_emb * joint_sents_labels.dimshuffle(0, 1, 'x'), axis=1) #(batch, hidden_size) joint_conv_model_claims = Conv_with_Mask( rng, input_tensor3=joint_embed_input_claim, mask_matrix=joint_claim_mask, image_shape=(batch_size, 1, emb_size, claim_len), filter_shape=(hidden_size[0], 1, emb_size, filter_size[0]), W=conv_W, b=conv_b ) #mutiple mask with the conv_out to set the features by UNK to zero joint_claim_embeddings = joint_conv_model_claims.maxpool_vec #(batch_size, hidden_size) # each sentence then have an embedding of length hidden_size joint_premise_hypo_emb = T.concatenate( [joint_premise_emb, joint_claim_embeddings], axis=1) #(batch, 2*hidden_size) ''' attentive conv in task2 ''' joint_sents_tensor3 = joint_embed_input_sents.dimshuffle(0, 2, 1).reshape( (batch_size, cand_size * sent_len, emb_size)) joint_sents_dot = T.batched_dot( joint_sents_tensor3, joint_sents_tensor3.dimshuffle( 0, 2, 1)) #(batch_size, cand_size*sent_len, cand_size*sent_len) joint_sents_dot_2_matrix = T.nnet.softmax( joint_sents_dot.reshape( (batch_size * cand_size * sent_len, cand_size * sent_len))) joint_sents_context = T.batched_dot( joint_sents_dot_2_matrix.reshape( (batch_size, cand_size * sent_len, cand_size * sent_len)), joint_sents_tensor3) #(batch_size, cand_size*sent_len, emb_size) joint_add_sents_context = joint_embed_input_sents + joint_sents_context.reshape( (batch_size * cand_size, sent_len, emb_size) ).dimshuffle( 0, 2, 1 ) #T.concatenate([joint_embed_input_sents, joint_sents_context.reshape((batch_size*cand_size, sent_len, emb_size)).dimshuffle(0,2,1)], axis=1) #(batch_size*cand_size, 2*emb_size, sent_len) attentive_conv_layer = Attentive_Conv_for_Pair_easy_version( rng, input_tensor3= joint_add_sents_context, #batch_size*cand_size, 2*emb_size, sent_len input_tensor3_r=T.repeat(joint_embed_input_claim, cand_size, axis=0), mask_matrix=joint_sents_mask.reshape( (joint_sents_mask.shape[0] * joint_sents_mask.shape[1], joint_sents_mask.shape[2])), mask_matrix_r=T.repeat(joint_claim_mask, cand_size, axis=0), image_shape=(batch_size * cand_size, 1, emb_size, sent_len), image_shape_r=(batch_size * cand_size, 1, emb_size, claim_len), filter_shape=(hidden_size[0], 1, emb_size, filter_size[0]), filter_shape_context=(hidden_size[0], 1, emb_size, 1), W=att_conv_W, b=att_conv_b, W_context=conv_W_context, b_context=conv_b_context) attentive_sent_embeddings_l = attentive_conv_layer.attentive_maxpool_vec_l.reshape( (batch_size, cand_size, hidden_size[0])) #(batch_size*cand_size, hidden_size) attentive_sent_embeddings_r = attentive_conv_layer.attentive_maxpool_vec_r.reshape( (batch_size, cand_size, hidden_size[0])) masked_sents_attconv = attentive_sent_embeddings_l * joint_sents_labels.dimshuffle( 0, 1, 'x') masked_claim_attconv = attentive_sent_embeddings_r * joint_sents_labels.dimshuffle( 0, 1, 'x') fine_max = T.concatenate([ T.max(masked_sents_attconv, axis=1), T.max(masked_claim_attconv, axis=1) ], axis=1) #(batch, 2*hidden) # fine_sum = T.concatenate([T.sum(masked_sents_attconv, axis=1),T.sum(masked_claim_attconv, axis=1)],axis=1) #(batch, 2*hidden) "Logistic Regression layer" joint_LR_input = T.concatenate([joint_premise_hypo_emb, fine_max], axis=1) joint_LR_input_size = 2 * hidden_size[0] + 2 * hidden_size[0] joint_U_a = create_ensemble_para(rng, 3, joint_LR_input_size) # (input_size, 3) joint_LR_b = theano.shared(value=np.zeros((3, ), dtype=theano.config.floatX), name='LR_b', borrow=True) #bias for each target class joint_LR_para = [joint_U_a, joint_LR_b] joint_layer_LR = LogisticRegression( rng, input=joint_LR_input, n_in=joint_LR_input_size, n_out=3, W=joint_U_a, b=joint_LR_b ) #basically it is a multiplication between weight matrix and input feature vector joint_loss = joint_layer_LR.negative_log_likelihood( joint_labels ) #for classification task, we usually used negative log likelihood as loss, the lower the better. ''' testing ''' # binarize_prob = T.where( inter_matrix > 0.5, 1, 0) #(batch_size, cand_size masked_inter_matrix = inter_matrix * sents_labels #(batch, cand_size) test_premise_emb = T.sum(batch_sent_emb * masked_inter_matrix.dimshuffle(0, 1, 'x'), axis=1) test_premise_hypo_emb = T.concatenate([test_premise_emb, claim_embeddings], axis=1) #fine-maxsum sents_tensor3 = embed_input_sents.dimshuffle(0, 2, 1).reshape( (batch_size, cand_size * sent_len, emb_size)) sents_dot = T.batched_dot(sents_tensor3, sents_tensor3.dimshuffle( 0, 2, 1)) #(batch_size, cand_size*sent_len, cand_size*sent_len) sents_dot_2_matrix = T.nnet.softmax( sents_dot.reshape( (batch_size * cand_size * sent_len, cand_size * sent_len))) sents_context = T.batched_dot( sents_dot_2_matrix.reshape( (batch_size, cand_size * sent_len, cand_size * sent_len)), sents_tensor3) #(batch_size, cand_size*sent_len, emb_size) add_sents_context = embed_input_sents + sents_context.reshape( (batch_size * cand_size, sent_len, emb_size) ).dimshuffle( 0, 2, 1 ) #T.concatenate([embed_input_sents, sents_context.reshape((batch_size*cand_size, sent_len, emb_size)).dimshuffle(0,2,1)], axis=1) #(batch_size*cand_size, 2*emb_size, sent_len) test_attentive_conv_layer = Attentive_Conv_for_Pair_easy_version( rng, input_tensor3= add_sents_context, #batch_size*cand_size, 2*emb_size, sent_len input_tensor3_r=T.repeat(embed_input_claim, cand_size, axis=0), mask_matrix=sents_mask.reshape( (sents_mask.shape[0] * sents_mask.shape[1], sents_mask.shape[2])), mask_matrix_r=T.repeat(claim_mask, cand_size, axis=0), image_shape=(batch_size * cand_size, 1, emb_size, sent_len), image_shape_r=(batch_size * cand_size, 1, emb_size, claim_len), filter_shape=(hidden_size[0], 1, emb_size, filter_size[0]), filter_shape_context=(hidden_size[0], 1, emb_size, 1), W=att_conv_W, b=att_conv_b, W_context=conv_W_context, b_context=conv_b_context) # attentive_sent_embeddings_l = attentive_conv_layer.attentive_maxpool_vec_l #(batch_size*cand_size, hidden_size) # attentive_sent_embeddings_r = attentive_conv_layer.attentive_maxpool_vec_r test_attentive_sent_embeddings_l = test_attentive_conv_layer.attentive_maxpool_vec_l.reshape( (batch_size, cand_size, hidden_size[0])) #(batch_size*cand_size, hidden_size) test_attentive_sent_embeddings_r = test_attentive_conv_layer.attentive_maxpool_vec_r.reshape( (batch_size, cand_size, hidden_size[0])) test_masked_sents_attconv = test_attentive_sent_embeddings_l * masked_inter_matrix.dimshuffle( 0, 1, 'x') test_masked_claim_attconv = test_attentive_sent_embeddings_r * masked_inter_matrix.dimshuffle( 0, 1, 'x') test_fine_max = T.concatenate([ T.max(test_masked_sents_attconv, axis=1), T.max(test_masked_claim_attconv, axis=1) ], axis=1) #(batch, 2*hidden) # test_fine_sum = T.concatenate([T.sum(test_masked_sents_attconv, axis=1),T.sum(test_masked_claim_attconv, axis=1)],axis=1) #(batch, 2*hidden) test_LR_input = T.concatenate([test_premise_hypo_emb, test_fine_max], axis=1) test_LR_input_size = joint_LR_input_size test_layer_LR = LogisticRegression( rng, input=test_LR_input, n_in=test_LR_input_size, n_out=3, W=joint_U_a, b=joint_LR_b ) #basically it is a multiplication between weight matrix and input feature vector params = [init_embeddings] + NN_para + LR_para + joint_LR_para cost = loss + joint_loss "Use AdaGrad to update parameters" updates = Gradient_Cost_Para(cost, params, learning_rate) train_model = theano.function([ sents_ids, sents_mask, sents_labels, claim_ids, claim_mask, joint_sents_ids, joint_sents_mask, joint_sents_labels, joint_claim_ids, joint_claim_mask, joint_labels ], cost, updates=updates, allow_input_downcast=True, on_unused_input='ignore') # dev_model = theano.function([sents_ids_l, sents_mask_l, sents_ids_r, sents_mask_r, labels], layer_LR.errors(labels), allow_input_downcast=True, on_unused_input='ignore') test_model = theano.function([ sents_ids, sents_mask, sents_labels, claim_ids, claim_mask, joint_labels ], [ inter_matrix, test_layer_LR.errors(joint_labels), test_layer_LR.y_pred ], allow_input_downcast=True, on_unused_input='ignore') ############### # TRAIN MODEL # ############### print '... training' # early-stopping parameters patience = 50000000000 # look as this many examples regardless start_time = time.time() mid_time = start_time past_time = mid_time epoch = 0 done_looping = False joint_n_train_batches = joint_train_size / batch_size joint_train_batch_start = list( np.arange(joint_n_train_batches) * batch_size) + [joint_train_size - batch_size] n_train_batches = train_size / batch_size train_batch_start = list( np.arange(n_train_batches) * batch_size) + [train_size - batch_size] n_test_batches = test_size / batch_size test_batch_start = list( np.arange(n_test_batches) * batch_size) + [test_size - batch_size] n_test_3th_batches = test_3th_size / batch_size test_3th_batch_start = list(np.arange(n_test_3th_batches) * batch_size) + [test_3th_size - batch_size] max_acc = 0.0 max_test_f1 = 0.0 max_acc_full_evi = 0.0 cost_i = 0.0 joint_train_indices = range(joint_train_size) train_indices = range(train_size) while epoch < n_epochs: epoch = epoch + 1 random.Random(100).shuffle( joint_train_indices ) #shuffle training set for each new epoch, is supposed to promote performance, but not garrenteed random.Random(100).shuffle(train_indices) iter_accu = 0 for joint_batch_id in joint_train_batch_start: #for each batch # iter means how many batches have been run, taking into loop iter = (epoch - 1) * joint_n_train_batches + iter_accu + 1 iter_accu += 1 joint_train_id_batch = joint_train_indices[ joint_batch_id:joint_batch_id + batch_size] for i in range(3): batch_id = random.choice(train_batch_start) train_id_batch = train_indices[batch_id:batch_id + batch_size] cost_i += train_model( train_sents[train_id_batch], train_sent_masks[train_id_batch], train_sent_labels[train_id_batch], train_claims[train_id_batch], train_claim_mask[train_id_batch], #joint_sents_ids,joint_sents_mask,joint_sents_labels, joint_claim_ids, joint_claim_mask, joint_labels joint_train_sents[joint_train_id_batch], joint_train_sent_masks[joint_train_id_batch], joint_train_sent_labels[joint_train_id_batch], joint_train_claims[joint_train_id_batch], joint_train_claim_mask[joint_train_id_batch], joint_train_labels[joint_train_id_batch]) #after each 1000 batches, we test the performance of the model on all test data # if (epoch==1 and iter%1000==0) or (epoch>=2 and iter%5==0): if iter % 100 == 0: print 'Epoch ', epoch, 'iter ' + str( iter) + ' average cost: ' + str(cost_i / iter), 'uses ', ( time.time() - past_time) / 60.0, 'min' past_time = time.time() f1_sum = 0.0 error_sum = 0.0 full_evi = 0 predictions = [] for test_batch_id in test_batch_start: # for each test batch batch_prob, error_i, pred_i = test_model( test_sents[test_batch_id:test_batch_id + batch_size], test_sent_masks[test_batch_id:test_batch_id + batch_size], test_sent_labels[test_batch_id:test_batch_id + batch_size], test_claims[test_batch_id:test_batch_id + batch_size], test_claim_mask[test_batch_id:test_batch_id + batch_size], test_labels[test_batch_id:test_batch_id + batch_size]) error_sum += error_i batch_sent_labels = test_sent_labels[ test_batch_id:test_batch_id + batch_size] batch_sent_names = test_sent_names[ test_batch_id:test_batch_id + batch_size] batch_ground_names = test_ground_names[ test_batch_id:test_batch_id + batch_size] batch_ground_labels = test_labels[ test_batch_id:test_batch_id + batch_size] for i in range(batch_size): instance_i = {} instance_i['label'] = pred_id2label.get( batch_ground_labels[i]) instance_i['predicted_label'] = pred_id2label.get( pred_i[i]) pred_sent_names = [] gold_sent_names = batch_ground_names[i] zipped = [(batch_prob[i, k], batch_sent_labels[i][k], batch_sent_names[i][k]) for k in range(cand_size)] sorted_zip = sorted(zipped, key=lambda x: x[0], reverse=True) for j in range(cand_size): triple = sorted_zip[j] if triple[1] == 1.0: ''' we should consider a rank, instead of binary if triple[0] >0.5: can control the recall, influence the strict_acc ''' if triple[0] > 0.5: # pred_sent_names.append(batch_sent_names[i][j]) pred_sent_names.append(triple[2]) # if len(pred_sent_names) == max_pred_pick: # break instance_i['predicted_evidence'] = pred_sent_names # print 'pred_sent_names:',pred_sent_names # print 'gold_sent_names:',gold_sent_names new_gold_names = [] for gold_name in gold_sent_names: new_gold_names.append([None, None] + gold_name) instance_i['evidence'] = [new_gold_names] predictions.append(instance_i) strict_score, label_accuracy, precision, recall, f1 = fever_score( predictions) print 'strict_score, label_accuracy, precision, recall, f1: ', strict_score, label_accuracy, precision, recall, f1 # test_f1=f1_sum/(len(test_batch_start)*batch_size) for test_batch_id in test_3th_batch_start: # for each test batch _, error_i, pred_i = test_model( test_3th_sents[test_batch_id:test_batch_id + batch_size], test_3th_sent_masks[test_batch_id:test_batch_id + batch_size], test_3th_sent_labels[test_batch_id:test_batch_id + batch_size], test_3th_claims[test_batch_id:test_batch_id + batch_size], test_3th_claim_mask[test_batch_id:test_batch_id + batch_size], test_3th_labels[test_batch_id:test_batch_id + batch_size]) for i in range(batch_size): instance_i = {} instance_i['label'] = pred_id2label.get(2) instance_i['predicted_label'] = pred_id2label.get( pred_i[i]) instance_i['predicted_evidence'] = [] instance_i['evidence'] = [] predictions.append(instance_i) strict_score, label_accuracy, precision, recall, f1 = fever_score( predictions) print 'strict_score, label_accuracy, precision, recall, f1: ', strict_score, label_accuracy, precision, recall, f1 print 'Epoch ', epoch, 'uses ', (time.time() - mid_time) / 60.0, 'min' mid_time = time.time() #print 'Batch_size: ', update_freq end_time = time.time() print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) return max_acc_test
def evaluate_lenet5(learning_rate=0.02, n_epochs=100, emb_size=300, batch_size=50, filter_size=[3], sent_len=40, claim_len=20, cand_size=10,hidden_size=[300,300], max_pred_pick=5): model_options = locals().copy() print "model options", model_options seed=1234 np.random.seed(seed) rng = np.random.RandomState(seed) #random seed, control the model generates the same results srng = T.shared_randomstreams.RandomStreams(rng.randint(seed)) "load raw data" train_sents, train_sent_masks, train_sent_labels, train_claims, train_claim_mask, _, word2id = load_fever_train(sent_len, claim_len, cand_size) test_sents, test_sent_masks, test_sent_labels, test_claims, test_claim_mask, test_sent_names,test_ground_names,_, word2id = load_fever_dev(sent_len, claim_len, cand_size, word2id) train_sents=np.asarray(train_sents, dtype='int32') # dev_sents_l=np.asarray(all_sentences_l[1], dtype='int32') test_sents=np.asarray(test_sents, dtype='int32') train_sent_masks=np.asarray(train_sent_masks, dtype=theano.config.floatX) # dev_masks_l=np.asarray(all_masks_l[1], dtype=theano.config.floatX) test_sent_masks=np.asarray(test_sent_masks, dtype=theano.config.floatX) train_sent_labels=np.asarray(train_sent_labels, dtype='int32') # dev_sents_r=np.asarray(all_sentences_r[1] , dtype='int32') # test_sent_labels=np.asarray(test_sent_labels, dtype='int32') train_claims=np.asarray(train_claims, dtype='int32') # dev_sents_r=np.asarray(all_sentences_r[1] , dtype='int32') test_claims=np.asarray(test_claims, dtype='int32') train_claim_mask=np.asarray(train_claim_mask, dtype=theano.config.floatX) # dev_masks_r=np.asarray(all_masks_r[1], dtype=theano.config.floatX) test_claim_mask=np.asarray(test_claim_mask, dtype=theano.config.floatX) # train_labels_store=np.asarray(all_labels[0], dtype='int32') # dev_labels_store=np.asarray(all_labels[1], dtype='int32') # test_labels_store=np.asarray(all_labels[2], dtype='int32') train_size=len(train_claims) # dev_size=len(dev_labels_store) test_size=len(test_claims) print 'train size: ', train_size, ' test size: ', test_size vocab_size=len(word2id)+1 rand_values=rng.normal(0.0, 0.01, (vocab_size, emb_size)) #generate a matrix by Gaussian distribution id2word = {y:x for x,y in word2id.iteritems()} word2vec=load_word2vec() rand_values=load_word2vec_to_init(rand_values, id2word, word2vec) init_embeddings=theano.shared(value=np.array(rand_values,dtype=theano.config.floatX), borrow=True) #wrap up the python variable "rand_values" into theano variable "now, start to build the input form of the model" sents_ids=T.itensor3() #(batch, cand_size, sent_len) sents_mask=T.ftensor3() sents_labels=T.imatrix() #(batch, cand_size) claim_ids = T.imatrix() #(batch, claim_len) claim_mask = T.imatrix() # labels=T.ivector() ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' embed_input_sents=init_embeddings[sents_ids.flatten()].reshape((batch_size*cand_size, sent_len, emb_size)).dimshuffle(0,2,1)#embed_input(init_embeddings, sents_ids_l)#embeddings[sents_ids_l.flatten()].reshape((batch_size,maxSentLen, emb_size)).dimshuffle(0,2,1) #the input format can be adapted into CNN or GRU or LSTM embed_input_claim=init_embeddings[claim_ids.flatten()].reshape((batch_size,claim_len, emb_size)).dimshuffle(0,2,1) conv_W, conv_b=create_conv_para(rng, filter_shape=(hidden_size[0], 1, emb_size, filter_size[0])) # conv_W2, conv_b2=create_conv_para(rng, filter_shape=(hidden_size[0], 1, emb_size, filter_size[1])) NN_para = [conv_W, conv_b] conv_model_sents = Conv_with_Mask(rng, input_tensor3=embed_input_sents, mask_matrix = sents_mask.reshape((sents_mask.shape[0]*sents_mask.shape[1],sents_mask.shape[2])), image_shape=(batch_size*cand_size, 1, emb_size, sent_len), filter_shape=(hidden_size[0], 1, emb_size, filter_size[0]), W=conv_W, b=conv_b) #mutiple mask with the conv_out to set the features by UNK to zero sent_embeddings=conv_model_sents.maxpool_vec #(batch_size*cand_size, hidden_size) # each sentence then have an embedding of length hidden_size batch_sent_emb = sent_embeddings.reshape((batch_size, cand_size, hidden_size[0])) conv_model_claims = Conv_with_Mask(rng, input_tensor3=embed_input_claim, mask_matrix = claim_mask, image_shape=(batch_size, 1, emb_size, claim_len), filter_shape=(hidden_size[0], 1, emb_size, filter_size[0]), W=conv_W, b=conv_b) #mutiple mask with the conv_out to set the features by UNK to zero claim_embeddings=conv_model_claims.maxpool_vec #(batch_size, hidden_size) # each sentence then have an embedding of length hidden_size batch_claim_emb = T.repeat(claim_embeddings.dimshuffle(0,'x', 1), cand_size, axis=1) concate_claim_sent = T.concatenate([batch_claim_emb,batch_sent_emb ], axis=2) concate_2_matrix = concate_claim_sent.reshape((batch_size*cand_size, hidden_size[0]*2)) LR_input = concate_2_matrix#T.concatenate([sent_embeddings,sent_embeddings2], axis=1) LR_input_size = hidden_size[0]*2 #classification layer, it is just mapping from a feature vector of size "hidden_size" to a vector of only two values: positive, negative U_a = create_ensemble_para(rng, 1, LR_input_size) # the weight matrix hidden_size*2 # LR_b = theano.shared(value=np.zeros((8,),dtype=theano.config.floatX),name='LR_b', borrow=True) #bias for each target class LR_para=[U_a] # layer_LR=LogisticRegression(rng, input=LR_input, n_in=LR_input_size, n_out=8, W=U_a, b=LR_b) #basically it is a multiplication between weight matrix and input feature vector score_matrix = T.nnet.sigmoid(concate_2_matrix.dot(U_a)) #batch * 12 inter_matrix = score_matrix.reshape((batch_size, cand_size)) # inter_sent_claim = T.batched_dot(batch_sent_emb, batch_claim_emb) #(batch_size, cand_size, 1) # inter_matrix = T.nnet.sigmoid(inter_sent_claim.reshape((batch_size, cand_size))) ''' maybe 1.0-inter_matrix can be rewritten into 1/e^(inter_matrix) ''' prob_pos = T.where( sents_labels < 1, 1.0-inter_matrix, inter_matrix) loss = -T.mean(T.log(prob_pos)) # # "Logistic Regression layer" # LR_input = T.concatenate([attentive_sent_embeddings_l,attentive_sent_embeddings_r,attentive_sent_embeddings_l+attentive_sent_embeddings_r,attentive_sent_embeddings_l*attentive_sent_embeddings_r],axis=1) # LR_input_size=4*hidden_size[0] # # U_a = create_ensemble_para(rng, 3, LR_input_size) # (input_size, 3) # LR_b = theano.shared(value=np.zeros((3,),dtype=theano.config.floatX),name='LR_b', borrow=True) #bias for each target class # LR_para=[U_a, LR_b] # # layer_LR=LogisticRegression(rng, input=normalize_matrix_col_wise(LR_input), n_in=LR_input_size, n_out=3, W=U_a, b=LR_b) #basically it is a multiplication between weight matrix and input feature vector # loss=layer_LR.negative_log_likelihood(labels) #for classification task, we usually used negative log likelihood as loss, the lower the better. ''' testing ''' binarize_prob = T.where( inter_matrix > 0.5, 1, 0) #(batch_size, cand_size params = [init_embeddings]+NN_para+LR_para cost=loss "Use AdaGrad to update parameters" updates = Gradient_Cost_Para(cost,params, learning_rate) train_model = theano.function([sents_ids,sents_mask,sents_labels,claim_ids,claim_mask], cost, updates=updates, allow_input_downcast=True, on_unused_input='ignore') # dev_model = theano.function([sents_ids_l, sents_mask_l, sents_ids_r, sents_mask_r, labels], layer_LR.errors(labels), allow_input_downcast=True, on_unused_input='ignore') test_model = theano.function([sents_ids,sents_mask,claim_ids,claim_mask], inter_matrix, allow_input_downcast=True, on_unused_input='ignore') ############### # TRAIN MODEL # ############### print '... training' # early-stopping parameters patience = 50000000000 # look as this many examples regardless start_time = time.time() mid_time = start_time past_time= mid_time epoch = 0 done_looping = False n_train_batches=train_size/batch_size train_batch_start=list(np.arange(n_train_batches)*batch_size)+[train_size-batch_size] # n_dev_batches=dev_size/batch_size # dev_batch_start=list(np.arange(n_dev_batches)*batch_size)+[dev_size-batch_size] n_test_batches=test_size/batch_size test_batch_start=list(np.arange(n_test_batches)*batch_size)+[test_size-batch_size] max_acc_dev=0.0 max_test_f1=0.0 cost_i=0.0 train_indices = range(train_size) while epoch < n_epochs: epoch = epoch + 1 random.Random(100).shuffle(train_indices) #shuffle training set for each new epoch, is supposed to promote performance, but not garrenteed iter_accu=0 for batch_id in train_batch_start: #for each batch # iter means how many batches have been run, taking into loop iter = (epoch - 1) * n_train_batches + iter_accu +1 iter_accu+=1 train_id_batch = train_indices[batch_id:batch_id+batch_size] ''' train_sents, train_sent_masks, train_sent_labels, train_claims, train_claim_mask sents_ids,sents_mask,sents_labels,claim_ids,claim_mask ''' cost_i+= train_model( train_sents[train_id_batch], train_sent_masks[train_id_batch], train_sent_labels[train_id_batch], train_claims[train_id_batch], train_claim_mask[train_id_batch]) #after each 1000 batches, we test the performance of the model on all test data # if (epoch==1 and iter%1000==0) or (epoch>=2 and iter%5==0): if iter%10==0: print 'Epoch ', epoch, 'iter '+str(iter)+' average cost: '+str(cost_i/iter), 'uses ', (time.time()-past_time)/60.0, 'min' past_time = time.time() ''' test test_sents, test_sent_masks, test_sent_labels, test_claims, test_claim_mask, sents_ids,sents_mask,claim_ids,claim_mask ''' f1_sum=0.0 for test_batch_id in test_batch_start: # for each test batch batch_prob=test_model( test_sents[test_batch_id:test_batch_id+batch_size], test_sent_masks[test_batch_id:test_batch_id+batch_size], test_claims[test_batch_id:test_batch_id+batch_size], test_claim_mask[test_batch_id:test_batch_id+batch_size]) batch_sent_labels = test_sent_labels[test_batch_id:test_batch_id+batch_size] batch_sent_names = test_sent_names[test_batch_id:test_batch_id+batch_size] batch_ground_names = test_ground_names[test_batch_id:test_batch_id+batch_size] for i in range(batch_size): pred_sent_names = [] gold_sent_names = batch_ground_names[i] zipped=[(batch_prob[i,k],batch_sent_labels[i][k],batch_sent_names[i][k]) for k in range(cand_size)] sorted_zip = sorted(zipped, key=lambda x: x[0], reverse=True) # print 'sorted_zip:', sorted_zip # exit(0) for j in range(cand_size): triple = sorted_zip[j] if triple[1] == 1.0: ''' we should consider a rank, instead of binary ''' if triple[0] >0.5: pred_sent_names.append(batch_sent_names[i][j]) if len(pred_sent_names) == max_pred_pick: break f1_i = compute_f1_two_list_names(pred_sent_names, gold_sent_names) f1_sum+=f1_i test_f1=f1_sum/(len(test_batch_start)*batch_size) if test_f1 > max_test_f1: max_test_f1=test_f1 print '\t\tcurrent test_f1:', test_f1,' ; ','\t\t\t\t\tmax_test_f1:', max_test_f1 print 'Epoch ', epoch, 'uses ', (time.time()-mid_time)/60.0, 'min' mid_time = time.time() #print 'Batch_size: ', update_freq end_time = time.time() print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) return max_acc_test