def load_data_sets(self): if self.task == 'spam_enron': self.data_sets = load_spam(ex_to_leave_out=self.ex_to_leave_out, num_examples=self.num_examples) elif self.task == 'small_mnist': self.data_sets = load_small_mnist(self.data_dir) elif self.task == 'mnist': self.data_sets = load_small_mnist('data') elif self.task == 'heart_disease': self.data_sets = load_heart_disease(ex_to_leave_out=self.ex_to_leave_out, num_examples=self.num_examples) elif self.task == 'income': self.data_sets = load_income(ex_to_leave_out=self.ex_to_leave_out, num_examples=self.num_examples) if 'mnist' in self.task: self.input_side = 28 self.input_channels = 1 self.input_dim = self.input_side * self.input_side * self.input_channels else: self.input_dim = self.data_sets.train.x.shape[1]
# import scipy # import sklearn import random import influence.experiments as experiments from influence.all_CNN_c import All_CNN_C from load_mnist import load_small_mnist, load_mnist import tensorflow as tf # np.random.seed(42) data_sets = load_small_mnist('data') num_classes = 10 input_side = 28 input_channels = 1 input_dim = input_side * input_side * input_channels weight_decay = 0.001 batch_size = 500 initial_learning_rate = 0.0001 decay_epochs = [10000, 20000] hidden1_units = 8 hidden2_units = 8 hidden3_units = 8 conv_patch_size = 3 keep_probs = [1.0, 1.0]