def main(): config = tf.ConfigProto(allow_soft_placement=True) config.gpu_options.allow_growth = True sess = tf.Session(config=config) dataset = save_and_load_mnist("./data/mnist/") x_train = dataset['train_data'] x_test = dataset['test_data'] m = Model(sess) m.fit(x_train, x_test)
import tensorflow as tf import numpy as np from load_mnist import save_and_load_mnist dataset = save_and_load_mnist("./data/mnist/") x_train = dataset['train_data'] y_train = dataset['train_target'] x_test = dataset['test_data'] y_test = dataset['test_target'] #global step의 경우, 0으로 초기화하고 train가능하지 않게 설정한다. #global step은 optimizer가 학습한 횟수를 의미한다. 변수로서 계속 변한다. global_step = tf.Variable(0, trainable=False, name='global_step') X = tf.placeholder(dtype=tf.float32, shape=[None, 784], name='X') Y = tf.placeholder(dtype=tf.int32, shape=[None, 1], name='Y') Y_one_hot = tf.reshape(tf.one_hot(Y, 10), [-1, 10], name='Y_one_hot') W1 = tf.get_variable(name='W1', shape=[784, 256], initializer=tf.glorot_uniform_initializer()) b1 = tf.get_variable(name='b1', shape=[256], initializer=tf.zeros_initializer()) h1 = tf.nn.relu(tf.nn.bias_add(tf.matmul(X, W1), b1), name='h1') W2 = tf.get_variable(name='W2', shape=[256, 128], initializer=tf.glorot_uniform_initializer()) b2 = tf.get_variable(name='b2',
def __init__(self, data_name): dataset = save_and_load_mnist("./data/mnist/") x = dataset[data_name] self.len = len(x) self.x_data = torch.from_numpy(x)