예제 #1
0
    def __init__(self, num_items=3):
        self.num_items = num_items
        self.purple, self.blue, self.orange, self.pu_bl, self.pu_or, self.bl_pu, self.bl_or, self.or_pu, self.or_bl, \
        self.pu_hand, self.bl_hand, self.or_hand = getImages()

        self.env_model = MDN(num_components=NUM_COMPONENTS,
                             in_dim=LATENT_DIM + 4,
                             out_dim=LATENT_DIM,
                             model_path="models/env_model_0002.h5")
        self.encoder = load_model("models/encoder_2001.h5")
        self.dqn_model = load_model('models/controller_0002.h5')
        self.decoder = load_model("models/decoder_2001.h5")
        self.r_model = load_model("models/r_model_0002.h5")

        self.s_bar = None
예제 #2
0
import random
from sklearn.manifold import TSNE

from keras.models import load_model
from load_process_images import getImages

latent_dim = 4
IMAGE_WIDTH = 64
IMAGE_HEIGHT = 64
CHANNELS = 3

decoder = load_model('models/decoder_1001.h5')
encoder = load_model('models/encoder_1001.h5')

imgs_list = []
for i in getImages():
    imgs_list.append(i)

imgs = getImages(True)

im_size = 64

while True:
    c = random.choice(range(0, imgs.shape[0]))
    img = imgs[c, :, :]
    print(c)
    #img = imgs[117]
    img = img.reshape((1, 64, 64, 3))
    encoded = np.asarray(encoder.predict(img))
    #encoded_logvar = encoded[1, :, :]    #store log(var) vector for later
    #encoded = encoded[0, :, :]   #get just means
예제 #3
0
def autoencode_images():
    images = getImages(return_single=True)

    encoder = load_model('models/encoder_1001.h5')

    return np.asarray(encoder.predict(images))
예제 #4
0
                         activation='relu')(h_decoded)
deconv = Conv2DTranspose(64, (5, 5), strides=(2, 2), activation='relu')(deconv)
deconv = Conv2DTranspose(32, (6, 6), strides=(2, 2), activation='relu')(deconv)
decoded_mean = Conv2DTranspose(3, (6, 6), strides=(2, 2),
                               activation='sigmoid')(deconv)

encoder = Model(img_input, z, name='encoder')
decoder = Model(decoder_input, decoded_mean, name='decoder')
decoder.summary()
reconstructed = decoder(z)
ae = Model(img_input, reconstructed, name='vae')
opt = RMSprop(lr=0.00025)
ae.compile(optimizer='adam', loss=vae_loss)
ae.summary()

x_train = y_train = x_test = y_test = getImages(return_single=True)

try:
    history = ae.fit(x_train,
                     x_train,
                     shuffle=True,
                     epochs=epochs,
                     batch_size=batch_size,
                     validation_data=(x_test, x_test))
finally:
    sss = 0
    encoder.save('models/encoder_1001.h5')
    decoder.save('models/decoder_1001.h5')
    ae.save('models/ae_1001.h5')

n = 15
예제 #5
0
h_decoded = Reshape((1, 1, 1024))(h_decoded)
deconv = Conv2DTranspose(128, (5, 5), strides= (2,2), activation='relu')(h_decoded)
deconv = Conv2DTranspose(64, (5, 5), strides= (2,2), activation='relu')(deconv)
deconv = Conv2DTranspose(32, (6, 6), strides= (2,2), activation='relu')(deconv)
decoded_mean = Conv2DTranspose(3, (6, 6), strides= (2,2), activation='sigmoid')(deconv)

encoder = Model(img_input, [z_mean, z_log_var], name='encoder')
decoder = Model(decoder_input, decoded_mean, name='decoder')
decoder.summary()
reconstructed = decoder(z)
vae = Model(img_input, reconstructed, name='vae')
opt = RMSprop(lr=0.00025)
vae.compile(optimizer='adam', loss=vae_loss)
vae.summary()

x_train = y_train = x_test = y_test = getImages(return_single=True, use_all=False, val=False)


try:
    history = vae.fit(x_train, x_train,
            shuffle=True,
            epochs=epochs,
            batch_size=batch_size,
            validation_data=(x_test, x_test))
finally:
    sss = 0
    encoder.save('models/encoder_2001.h5')
    decoder.save('models/decoder_2001.h5')
    vae.save('models/vae_2001.h5')

n = 15
예제 #6
0
 def __init__(self, num_items=3, use_all=True, val=False):
     self.state = None
     self.num_items = num_items
     self.purple, self.blue, self.orange, self.pu_bl, self.pu_or, self.bl_pu, self.bl_or, self.or_pu, self.or_bl,\
         self.pu_hand, self.bl_hand, self.or_hand = getImages(return_single=False ,use_all=use_all, val=val)