예제 #1
0
def test_knn_graph_anisotropy():
    k = 3
    a = 13
    n_pca = 20
    anisotropy = 0.9
    thresh = 1e-4
    data_small = data[np.random.choice(len(data),
                                       len(data) // 2,
                                       replace=False)]
    pca = PCA(n_pca, svd_solver="randomized", random_state=42).fit(data_small)
    data_small_nu = pca.transform(data_small)
    pdx = squareform(pdist(data_small_nu, metric="euclidean"))
    knn_dist = np.partition(pdx, k, axis=1)[:, :k]
    epsilon = np.max(knn_dist, axis=1)
    weighted_pdx = (pdx.T / epsilon).T
    K = np.exp(-1 * weighted_pdx**a)
    K[K < thresh] = 0
    K = K + K.T
    K = np.divide(K, 2)
    d = K.sum(1)
    W = K / (np.outer(d, d)**anisotropy)
    np.fill_diagonal(W, 0)
    G = pygsp.graphs.Graph(W)
    G2 = build_graph(
        data_small,
        n_pca=n_pca,
        thresh=thresh,
        decay=a,
        knn=k - 1,
        random_state=42,
        use_pygsp=True,
        anisotropy=anisotropy,
    )
    assert isinstance(G2, graphtools.graphs.kNNGraph)
    assert G.N == G2.N
    np.testing.assert_allclose(G.dw, G2.dw, atol=1e-14, rtol=1e-14)
    np.testing.assert_allclose((G2.W - G.W).data, 0, atol=1e-14, rtol=1e-14)
예제 #2
0
def test_exact_graph_anisotropy():
    k = 3
    a = 13
    n_pca = 20
    anisotropy = 0.9
    data_small = data[np.random.choice(len(data),
                                       len(data) // 2,
                                       replace=False)]
    pca = PCA(n_pca, svd_solver="randomized", random_state=42).fit(data_small)
    data_small_nu = pca.transform(data_small)
    pdx = squareform(pdist(data_small_nu, metric="euclidean"))
    knn_dist = np.partition(pdx, k, axis=1)[:, :k]
    epsilon = np.max(knn_dist, axis=1)
    weighted_pdx = (pdx.T / epsilon).T
    K = np.exp(-1 * weighted_pdx**a)
    K = K + K.T
    K = np.divide(K, 2)
    d = K.sum(1)
    W = K / (np.outer(d, d)**anisotropy)
    np.fill_diagonal(W, 0)
    G = pygsp.graphs.Graph(W)
    G2 = build_graph(
        data_small,
        thresh=0,
        n_pca=n_pca,
        decay=a,
        knn=k - 1,
        random_state=42,
        use_pygsp=True,
        anisotropy=anisotropy,
    )
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G2.W != G.W).sum() == 0
    assert (G.W != G2.W).nnz == 0
    with assert_raises_message(ValueError,
                               "Expected 0 <= anisotropy <= 1. Got -1"):
        build_graph(
            data_small,
            thresh=0,
            n_pca=n_pca,
            decay=a,
            knn=k - 1,
            random_state=42,
            use_pygsp=True,
            anisotropy=-1,
        )
    with assert_raises_message(ValueError,
                               "Expected 0 <= anisotropy <= 1. Got 2"):
        build_graph(
            data_small,
            thresh=0,
            n_pca=n_pca,
            decay=a,
            knn=k - 1,
            random_state=42,
            use_pygsp=True,
            anisotropy=2,
        )
    with assert_raises_message(ValueError,
                               "Expected 0 <= anisotropy <= 1. Got invalid"):
        build_graph(
            data_small,
            thresh=0,
            n_pca=n_pca,
            decay=a,
            knn=k - 1,
            random_state=42,
            use_pygsp=True,
            anisotropy="invalid",
        )
예제 #3
0
def test_exact_graph():
    k = 3
    a = 13
    n_pca = 20
    bandwidth_scale = 1.3
    data_small = data[np.random.choice(len(data),
                                       len(data) // 2,
                                       replace=False)]
    pca = PCA(n_pca, svd_solver="randomized", random_state=42).fit(data_small)
    data_small_nu = pca.transform(data_small)
    pdx = squareform(pdist(data_small_nu, metric="euclidean"))
    knn_dist = np.partition(pdx, k, axis=1)[:, :k]
    epsilon = np.max(knn_dist, axis=1) * bandwidth_scale
    weighted_pdx = (pdx.T / epsilon).T
    K = np.exp(-1 * weighted_pdx**a)
    W = K + K.T
    W = np.divide(W, 2)
    np.fill_diagonal(W, 0)
    G = pygsp.graphs.Graph(W)
    G2 = build_graph(
        data_small,
        thresh=0,
        n_pca=n_pca,
        decay=a,
        knn=k - 1,
        random_state=42,
        bandwidth_scale=bandwidth_scale,
        use_pygsp=True,
    )
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G.W != G2.W).nnz == 0
    assert (G2.W != G.W).sum() == 0
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
    G2 = build_graph(
        pdx,
        n_pca=None,
        precomputed="distance",
        bandwidth_scale=bandwidth_scale,
        decay=a,
        knn=k - 1,
        random_state=42,
        use_pygsp=True,
    )
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G.W != G2.W).nnz == 0
    assert (G2.W != G.W).sum() == 0
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
    G2 = build_graph(
        sp.coo_matrix(K),
        n_pca=None,
        precomputed="affinity",
        random_state=42,
        use_pygsp=True,
    )
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G.W != G2.W).nnz == 0
    assert (G2.W != G.W).sum() == 0
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
    G2 = build_graph(K,
                     n_pca=None,
                     precomputed="affinity",
                     random_state=42,
                     use_pygsp=True)
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G.W != G2.W).nnz == 0
    assert (G2.W != G.W).sum() == 0
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
    G2 = build_graph(W,
                     n_pca=None,
                     precomputed="adjacency",
                     random_state=42,
                     use_pygsp=True)
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G.W != G2.W).nnz == 0
    assert (G2.W != G.W).sum() == 0
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
예제 #4
0
def test_truncated_exact_graph_sparse():
    k = 3
    a = 13
    n_pca = 20
    thresh = 1e-4
    data_small = data[np.random.choice(len(data),
                                       len(data) // 2,
                                       replace=False)]
    pca = TruncatedSVD(n_pca, random_state=42).fit(data_small)
    data_small_nu = pca.transform(data_small)
    pdx = squareform(pdist(data_small_nu, metric="euclidean"))
    knn_dist = np.partition(pdx, k, axis=1)[:, :k]
    epsilon = np.max(knn_dist, axis=1)
    weighted_pdx = (pdx.T / epsilon).T
    K = np.exp(-1 * weighted_pdx**a)
    K[K < thresh] = 0
    W = K + K.T
    W = np.divide(W, 2)
    np.fill_diagonal(W, 0)
    G = pygsp.graphs.Graph(W)
    G2 = build_graph(
        sp.coo_matrix(data_small),
        thresh=thresh,
        graphtype="exact",
        n_pca=n_pca,
        decay=a,
        knn=k - 1,
        random_state=42,
        use_pygsp=True,
    )
    assert G.N == G2.N
    np.testing.assert_allclose(G2.W.toarray(), G.W.toarray())
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
    G2 = build_graph(
        sp.bsr_matrix(pdx),
        n_pca=None,
        precomputed="distance",
        thresh=thresh,
        decay=a,
        knn=k - 1,
        random_state=42,
        use_pygsp=True,
    )
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G.W != G2.W).nnz == 0
    assert (G2.W != G.W).sum() == 0
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
    G2 = build_graph(
        sp.lil_matrix(K),
        n_pca=None,
        precomputed="affinity",
        thresh=thresh,
        random_state=42,
        use_pygsp=True,
    )
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G.W != G2.W).nnz == 0
    assert (G2.W != G.W).sum() == 0
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
    G2 = build_graph(
        sp.dok_matrix(W),
        n_pca=None,
        precomputed="adjacency",
        random_state=42,
        use_pygsp=True,
    )
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G.W != G2.W).nnz == 0
    assert (G2.W != G.W).sum() == 0
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
예제 #5
0
def test_exact_graph():
    k = 3
    a = 13
    n_pca = 20
    data_small = data[np.random.choice(len(data),
                                       len(data) // 2,
                                       replace=False)]
    pca = PCA(n_pca, svd_solver='randomized', random_state=42).fit(data_small)
    data_small_nu = pca.transform(data_small)
    pdx = squareform(pdist(data_small_nu, metric='euclidean'))
    knn_dist = np.partition(pdx, k, axis=1)[:, :k]
    epsilon = np.max(knn_dist, axis=1)
    weighted_pdx = (pdx.T / epsilon).T
    K = np.exp(-1 * weighted_pdx**a)
    W = K + K.T
    W = np.divide(W, 2)
    np.fill_diagonal(W, 0)
    G = pygsp.graphs.Graph(W)
    G2 = build_graph(data_small,
                     thresh=0,
                     n_pca=n_pca,
                     decay=a,
                     knn=k,
                     random_state=42,
                     use_pygsp=True)
    assert (G.N == G2.N)
    assert (np.all(G.d == G2.d))
    assert ((G.W != G2.W).nnz == 0)
    assert ((G2.W != G.W).sum() == 0)
    assert (isinstance(G2, graphtools.graphs.TraditionalGraph))
    G2 = build_graph(pdx,
                     n_pca=None,
                     precomputed='distance',
                     decay=a,
                     knn=k,
                     random_state=42,
                     use_pygsp=True)
    assert (G.N == G2.N)
    assert (np.all(G.d == G2.d))
    assert ((G.W != G2.W).nnz == 0)
    assert ((G2.W != G.W).sum() == 0)
    assert (isinstance(G2, graphtools.graphs.TraditionalGraph))
    G2 = build_graph(sp.coo_matrix(K),
                     n_pca=None,
                     precomputed='affinity',
                     random_state=42,
                     use_pygsp=True)
    assert (G.N == G2.N)
    assert (np.all(G.d == G2.d))
    assert ((G.W != G2.W).nnz == 0)
    assert ((G2.W != G.W).sum() == 0)
    assert (isinstance(G2, graphtools.graphs.TraditionalGraph))
    G2 = build_graph(K,
                     n_pca=None,
                     precomputed='affinity',
                     random_state=42,
                     use_pygsp=True)
    assert (G.N == G2.N)
    assert (np.all(G.d == G2.d))
    assert ((G.W != G2.W).nnz == 0)
    assert ((G2.W != G.W).sum() == 0)
    assert (isinstance(G2, graphtools.graphs.TraditionalGraph))
    G2 = build_graph(W,
                     n_pca=None,
                     precomputed='adjacency',
                     random_state=42,
                     use_pygsp=True)
    assert (G.N == G2.N)
    assert (np.all(G.d == G2.d))
    assert ((G.W != G2.W).nnz == 0)
    assert ((G2.W != G.W).sum() == 0)
    assert (isinstance(G2, graphtools.graphs.TraditionalGraph))