def main(): makedirs.mkdirs(os.path.join(args['checkpoints_dir'], args['name'])) if len(args['device_ids']) > 0: torch.cuda.set_device(args['device_ids'][0]) A_train_loader = data.DataLoader(imageLabelLoader(args['data_path'], dataName=args['domainA'], phase='train'), batch_size=args['batch_size'], num_workers=args['num_workers'], shuffle=True) A_val_loader = data.DataLoader(imageLabelLoader(args['data_path'], dataName=args['domainA'], phase='val'), batch_size=args['batch_size'], num_workers=args['num_workers'], shuffle=False) B_train_loader = data.DataLoader(imageLoader(args['data_path'], dataName=args['domainB'], phase='train'), batch_size=args['batch_size'], num_workers=args['num_workers'], shuffle=True) B_val_loader = data.DataLoader(imageLabelLoader(args['data_path'], dataName=args['domainB'], phase='val'), batch_size=args['batch_size'], num_workers=args['num_workers'], shuffle=False) model = deeplabGan() model.initialize(args) # multi GPUS # model = torch.nn.DataParallel(model,device_ids=args['device_ids']).cuda() best_prec = 0 for epoch in range(args['n_epoch']): train(A_train_loader, B_train_loader, model, epoch) if epoch % 2 == 0: prec = validate(A_val_loader, model, nn.CrossEntropyLoss(size_average=False), False) prec = validate(B_val_loader, model, nn.CrossEntropyLoss(size_average=False), True) is_best = prec > best_prec best_prec = max(prec, best_prec) if is_best: model.save('best')
def main(): if len(args['device_ids']) > 0: torch.cuda.set_device(args['device_ids'][0]) test_loader = data.DataLoader(imageLabelLoader(args['data_path'], dataName=args['domainB'], phase='val'), batch_size=args['batch_size'], num_workers=args['num_workers'], shuffle=False) gym = deeplabGanS2TWithRefine4() gym.initialize(args) gym.load( '/home/ben/mathfinder/PROJECT/AAAI2017/our_Method/v3/deeplab_feature_adaptation/checkpoints/Lip_to_July_g1/best_Ori_on_B_model.pth' ) gym.eval() matrix = ConfusionMatrix(args['label_nums']) for i, (image, label) in enumerate(test_loader): label = label.cuda(async=True) target_var = torch.autograd.Variable(label, volatile=True) gym.test(False, image) output = gym.output matrix = update_confusion_matrix(matrix, output.data, label) print(matrix.avg_f1score()) print(matrix.f1score())
def main(): if len(args['device_ids']) > 0: torch.cuda.set_device(args['device_ids'][0]) test_loader = data.DataLoader(imageLabelLoader(args['data_path'], dataName=args['domainB'], phase='test'), batch_size=args['batch_size'], num_workers=args['num_workers'], shuffle=False) gym = deeplabG1G2() gym.initialize(args) gym.load('/home/ben/mathfinder/PROJECT/AAAI2017/our_Method/v3/deeplab_feature_adaptation/checkpoints/lr_g1=0.00001_lr_g2=0.00000001_interval_g1=6_interval_d1=6_net_D=lsganMultOutput_D_if_adaptive=True/best_Ori_on_B_model.pth') gym.eval() matrix = ConfusionMatrix(args['label_nums']) for i, (image, label) in enumerate(test_loader): label = label.cuda(async=True) target_var = torch.autograd.Variable(label, volatile=True) gym.test(image) output = gym.output matrix = update_confusion_matrix(matrix, output.data, label) print(matrix.all_acc())
def main(): makedirs.mkdirs(os.path.join(args['checkpoints_dir'], args['name'])) if len(args['device_ids']) > 0: torch.cuda.set_device(args['device_ids'][0]) A_train_loader = data.DataLoader(imageLabelLoader(args['data_path'],dataName=args['domainA'], phase='train'), batch_size=args['batch_size'], num_workers=args['num_workers'], shuffle=True) A_val_loader = data.DataLoader(imageLabelLoader(args['data_path'], dataName=args['domainA'], phase='val'), batch_size=args['batch_size'], num_workers=args['num_workers'], shuffle=False) B_train_loader = data.DataLoader(imageLoader(args['data_path'], dataName=args['domainB'], phase='train+unlabel'), batch_size=args['batch_size'], num_workers=args['num_workers'], shuffle=True) B_val_loader = data.DataLoader(imageLabelLoader(args['data_path'], dataName=args['domainB'], phase='val'), batch_size=args['batch_size'], num_workers=args['num_workers'], shuffle=False) model = deeplabGanWithRefine() model.initialize(args) # multi GPUS # model = torch.nn.DataParallel(model,device_ids=args['device_ids']).cuda() Iter = 0 if args['resume']: if os.path.isfile(args['resume']): logger.info("=> loading checkpoint '{}'".format(args['resume'])) model.load(args['resume']) else: print("=> no checkpoint found at '{}'".format(args['resume'])) best_Ori_on_B = 0 best_Ada_on_B = 0 model.train() for epoch in range(args['n_epoch']): # train(A_train_loader, B_train_loader, model, epoch) # switch to train mode for i, (A_image, A_label) in enumerate(A_train_loader): Iter += 1 B_image = next(iter(B_train_loader)) model.set_input({'A': A_image, 'A_label': A_label, 'B': B_image}) model.optimize_parameters() output = model.output if i % args['print_freq'] == 0: matrix = ConfusionMatrix() update_confusion_matrix(matrix, output.data, A_label) logger.info('Time: {time}\t' 'Epoch/Iter: [{epoch}/{Iter}]\t' 'loss: {loss:.4f}\t' 'loss_R: {loss_R:.4f}\t' 'acc: {accuracy:.4f}\t' 'fg_acc: {fg_accuracy:.4f}\t' 'avg_prec: {avg_precision:.4f}\t' 'avg_rec: {avg_recall:.4f}\t' 'avg_f1: {avg_f1core:.4f}\t' 'loss_G: {loss_G:.4f}\t' 'loss_D: {loss_D:.4f}\t'.format( time=time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()), epoch=epoch, Iter=Iter, loss=model.loss_P.data[0], loss_R=model.loss_R.data[0], accuracy=matrix.accuracy(), fg_accuracy=matrix.fg_accuracy(), avg_precision=matrix.avg_precision(), avg_recall=matrix.avg_recall(), avg_f1core=matrix.avg_f1score(), loss_G=model.loss_G.data[0], loss_D=model.loss_D.data[0])) if Iter % 1000 == 0: model.eval() acc_Ori_on_A = validate(A_val_loader, model, nn.CrossEntropyLoss(size_average=False), False) acc_Ori_on_B = validate(B_val_loader, model, nn.CrossEntropyLoss(size_average=False), False) acc_Ada_on_B = validate(B_val_loader, model, nn.CrossEntropyLoss(size_average=False), True) prec_Ori_on_B = acc_Ori_on_B['avg_f1score'] prec_Ada_on_B = acc_Ada_on_B['avg_f1score'] is_best = prec_Ori_on_B > best_Ori_on_B best_Ori_on_B = max(prec_Ori_on_B, best_Ori_on_B) if is_best: model.save('best_Ori_on_B', Iter=Iter, epoch=epoch, acc={'acc_Ori_on_A':acc_Ori_on_A, 'acc_Ori_on_B':acc_Ori_on_B, 'acc_Ada_on_B':acc_Ada_on_B}) is_best = prec_Ada_on_B > best_Ada_on_B best_Ada_on_B = max(prec_Ada_on_B, best_Ada_on_B) if is_best: model.save('best_Ada_on_B', Iter=Iter, epoch=epoch, acc={'acc_Ori_on_A':acc_Ori_on_A, 'acc_Ori_on_B':acc_Ori_on_B, 'acc_Ada_on_B':acc_Ada_on_B}) model.train()
def main(): train_loader = data.DataLoader(imageLabelLoader(args['data_path'], dataName=args['domainB'], phase='train'), batch_size=args['batch_size'], num_workers=args['num_workers'], shuffle=True) val_loader = data.DataLoader(imageLabelLoader(args['data_path'], dataName=args['domainB'], phase='val'), batch_size=args['batch_size'], num_workers=args['num_workers'], shuffle=False) model = Deeplab() print(model) if args['pretrain_model'] != '': pretrained_dict = torch.load(args['weigths_pool'] + '/' + args['pretrain_model']) model.weights_init(pretrained_dict=pretrained_dict) else: model.apply(weights_init()) ignored_params = list(map(id, model.fc8_1.parameters())) ignored_params.extend(list(map(id, model.fc8_2.parameters()))) ignored_params.extend(list(map(id, model.fc8_3.parameters()))) ignored_params.extend(list(map(id, model.fc8_4.parameters()))) base_params = filter(lambda p: id(p) not in ignored_params, model.parameters()) optimizer = torch.optim.SGD([ { 'params': base_params }, { 'params': get_parameters(model.fc8_1, 'weight'), 'lr': args['l_rate'] * 10 }, { 'params': get_parameters(model.fc8_2, 'weight'), 'lr': args['l_rate'] * 10 }, { 'params': get_parameters(model.fc8_3, 'weight'), 'lr': args['l_rate'] * 10 }, { 'params': get_parameters(model.fc8_4, 'weight'), 'lr': args['l_rate'] * 10 }, { 'params': get_parameters(model.fc8_1, 'bias'), 'lr': args['l_rate'] * 20 }, { 'params': get_parameters(model.fc8_2, 'bias'), 'lr': args['l_rate'] * 20 }, { 'params': get_parameters(model.fc8_3, 'bias'), 'lr': args['l_rate'] * 20 }, { 'params': get_parameters(model.fc8_4, 'bias'), 'lr': args['l_rate'] * 20 }, ], lr=args['l_rate'], momentum=0.9, weight_decay=5e-4) criterion = nn.CrossEntropyLoss(size_average=False).cuda() # multi GPUS model = torch.nn.DataParallel(model, device_ids=args['device_ids']).cuda() best_prec = 0 for epoch in range(args['n_epoch']): train(train_loader, model, criterion, optimizer, epoch) if epoch > 0 and epoch % 9 == 0: prec = validate(val_loader, model, criterion) is_best = prec > best_prec best_prec = max(prec, best_prec) save_checkpoint( { 'epoch': epoch + 1, 'arch': 'deeplab(indoor)', 'state_dict': model.state_dict(), 'best_prec1': best_prec, 'optimizer': optimizer.state_dict(), }, is_best, filename='./checkpoint/indoor_epoch_' + str(epoch) + '.pth.tar')