class BUILDING_DATASETS: def __init__(self, test_folder): self.var = RootVariables() self.dataset = None self.imu_arr_acc, self.imu_arr_gyro, self.gaze_arr = None, None, None self.train_last, self.test_last = None, None self.train_new, self.test_new = None, None temp = None self.video_file = 'scenevideo.mp4' self.test_folders_num, self.train_folders_num = 0, 0 self.frame_count = 0 self.capture = None self.ret = None self.toggle = 0 self.test_folder = test_folder self.stack_frames = [] self.transforms = transforms.Compose([transforms.ToTensor()]) self.panda_data = {} def populate_gaze_data(self, subDir): # if toggle != self.toggle: # self.folders_num = 0 # self.toggle = toggle subDir = subDir + '/' if subDir[-1]!='/' else subDir print(subDir) os.chdir(self.var.root + subDir) capture = cv2.VideoCapture(self.video_file) self.frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) self.dataset = JSON_LOADER(subDir) self.dataset.POP_GAZE_DATA(self.frame_count) self.gaze_arr = np.array(self.dataset.var.gaze_data).transpose() _ = os.system('rm gaze_file.csv') self.panda_data = {} self.create_dataframes(subDir, 'gaze') self.gaze_arr = np.array(self.dataset.var.gaze_data).transpose() temp = np.zeros((self.frame_count*4-self.var.trim_frame_size*4*2, 2)) temp[:,0] = self.gaze_arr[tuple([np.arange(self.var.trim_frame_size*4, self.frame_count*4 - self.var.trim_frame_size*4), [0]])] temp[:,1] = self.gaze_arr[tuple([np.arange(self.var.trim_frame_size*4, self.frame_count*4 - self.var.trim_frame_size*4), [1]])] return temp def load_unified_gaze_dataset(self): ## missing data in imu_lift_s1 self.test_folders_num, self.train_folders_num = 0, 0 for index, subDir in enumerate(tqdm(sorted(os.listdir(self.var.root)), desc="Building gaze dataset")): if 'train_' in subDir : self.temp = self.populate_gaze_data(subDir) self.train_folders_num += 1 if self.train_folders_num > 1: self.train_new = np.concatenate((self.train_last, self.temp), axis=0) else: self.train_new = self.temp self.train_last = self.train_new print(subDir, len(self.train_last.reshape(-1, 4, 2))) if 'test_' in subDir: print('TEST folder: ', self.test_folder) self.temp = self.populate_gaze_data(subDir) self.test_folders_num += 1 if self.test_folders_num > 1: self.test_new = np.concatenate((self.test_last, self.temp), axis=0) else: self.test_new = self.temp self.test_last = self.test_new print(subDir, len(self.test_last.reshape(-1, 4, 2))) return self.train_new, self.test_new def load_unified_frame_dataset(self, reset_dataset=0): ## INCLUDES THE LAST FRAME if reset_dataset == 1: print('Deleting the old dataset .. ') _ = os.system('rm -r ' + self.var.root + 'training_images') _ = os.system('rm -r ' + self.var.root + 'testing_images') _ = os.system('mkdir ' + self.var.root + 'training_images') _ = os.system('mkdir ' + self.var.root + 'testing_images') train_frame_index, test_frame_index = 0, 0 trainpaths, testpaths = [], [] print("Building Image dataset ..") tqdmloader = tqdm(sorted(os.listdir(self.var.root))) for index, subDir in enumerate(tqdmloader): if 'train_' in subDir : tqdmloader.set_description('Train folder: {}'.format(subDir)) # _ = os.system('rm -r ' + self.var.root + 'training_images/' + subDir) _ = os.system('mkdir ' + self.var.root + 'training_images/' + subDir) total_frames = 0 subDir = subDir + '/' if subDir[-1]!='/' else subDir os.chdir(self.var.root + subDir) self.capture = cv2.VideoCapture(self.video_file) self.frame_count = int(self.capture.get(cv2.CAP_PROP_FRAME_COUNT)) self.capture.set(cv2.CAP_PROP_POS_FRAMES,self.var.trim_frame_size - 8) for i in range(self.frame_count - (self.var.trim_frame_size*2) + 8): ## because we need frame no. 149 to stack with frame 150, to predict for frame no. 150 _, frame = self.capture.read() frame = cv2.resize(frame, (512, 288)) # (512, 288) w, h = 224, 224 center_x = frame.shape[1] / 2 center_y = frame.shape[0] / 2 x = center_x - w/2 y = center_y - h/2 frame = frame[int(y):int(y+h), int(x):int(x+w)] # frame = cv2.resize(frame, (224, 224)) # (512, 288) # frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) path = self.var.root + 'training_images/' + subDir + 'image_' + str(train_frame_index) + '.jpg' cv2.imwrite(path, frame) # self.create_clips(self.capture, train_frame_index, 'training_images') train_frame_index += 1 trainpaths.append(path) if 'test_' in subDir: tqdmloader.set_description('Test folder: {}'.format(subDir)) _ = os.system('mkdir ' + self.var.root + 'testing_images/' + subDir) total_frames = 0 subDir = subDir + '/' if subDir[-1]!='/' else subDir os.chdir(self.var.root + subDir) self.capture = cv2.VideoCapture(self.video_file) self.frame_count = int(self.capture.get(cv2.CAP_PROP_FRAME_COUNT)) # _ = os.system('rm ' + str(self.var.frame_size) + '_framesExtracted_data_' + str(self.var.trim_frame_size) + '.npy') self.capture.set(cv2.CAP_PROP_POS_FRAMES,self.var.trim_frame_size - 8) for i in range(self.frame_count - (self.var.trim_frame_size*2) + 8): ## because we need frame no. 149 to stack with frame 150, to predict for frame no. 150 _, frame = self.capture.read() frame = cv2.resize(frame, (512, 288)) # (398, 224) # frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) w, h = 224, 224 center_x = frame.shape[1] / 2 center_y = frame.shape[0] / 2 x = center_x - w/2 y = center_y - h/2 frame = frame[int(y):int(y+h), int(x):int(x+w)] path = self.var.root + 'testing_images/' + subDir + 'image_' + str(test_frame_index) + '.jpg' cv2.imwrite(path, frame) # self.create_clips(self.capture, test_frame_index, 'testing_images') test_frame_index += 1 testpaths.append(path) print(test_frame_index) os.chdir(self.var.root) dict = {'image_paths': trainpaths} df = pd.DataFrame(dict) df.to_csv(self.var.root + '/trainImg.csv') dict = {'image_paths':testpaths} df = pd.DataFrame(dict) df.to_csv(self.var.root + '/testImg.csv') def populate_imu_data(self, subDir): subDir = subDir + '/' if subDir[-1]!='/' else subDir print(subDir) os.chdir(self.var.root + subDir) capture = cv2.VideoCapture(self.video_file) self.frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) self.dataset = JSON_LOADER(subDir) self.dataset.POP_IMU_DATA(self.frame_count, cut_short=True) _ = os.system('rm imu_file.csv') self.panda_data = {} self.create_dataframes(subDir, dframe_type='imu') self.imu_arr_acc = np.array(self.dataset.var.imu_data_acc).transpose() self.imu_arr_gyro = np.array(self.dataset.var.imu_data_gyro).transpose() temp = np.zeros((len(self.imu_arr_acc) , 6)) temp = np.zeros((self.frame_count*4-self.var.trim_frame_size*4, 6)) temp[:,0] = self.imu_arr_acc[tuple([np.arange(self.var.trim_frame_size*2, self.frame_count*4 - self.var.trim_frame_size*2), [0]])] temp[:,1] = self.imu_arr_acc[tuple([np.arange(self.var.trim_frame_size*2, self.frame_count*4 - self.var.trim_frame_size*2), [1]])] temp[:,2] = self.imu_arr_acc[tuple([np.arange(self.var.trim_frame_size*2, self.frame_count*4 - self.var.trim_frame_size*2), [2]])] temp[:,3] = self.imu_arr_gyro[tuple([np.arange(self.var.trim_frame_size*2, self.frame_count*4 - self.var.trim_frame_size*2), [0]])] temp[:,4] = self.imu_arr_gyro[tuple([np.arange(self.var.trim_frame_size*2, self.frame_count*4 - self.var.trim_frame_size*2), [1]])] temp[:,5] = self.imu_arr_gyro[tuple([np.arange(self.var.trim_frame_size*2, self.frame_count*4 - self.var.trim_frame_size*2), [2]])] return temp def load_unified_imu_dataset(self): ## missing data in imu_CoffeeVendingMachine_S2 for index, subDir in enumerate(tqdm(sorted(os.listdir(self.var.root)), desc="Building IMU dataset")): if 'train_' in subDir : self.temp = self.populate_imu_data(subDir) self.train_folders_num += 1 if self.train_folders_num > 1: self.train_new = np.concatenate((self.train_last, self.temp), axis=0) else: self.train_new = self.temp self.train_last = self.train_new if 'test_' in subDir: print('TEST folder: ', self.test_folder) self.temp = self.populate_imu_data(subDir) self.test_folders_num += 1 if self.test_folders_num > 1: self.test_new = np.concatenate((self.test_last, self.temp), axis=0) else: self.test_new = self.temp self.test_last = self.test_new return self.train_new, self.test_new def create_dataframes(self, subDir, dframe_type, start_index=0): if dframe_type == 'gaze': ## GAZE for sec in range(self.frame_count): self.panda_data[sec] = list(zip(self.dataset.var.gaze_data[0][start_index:start_index + 4], self.dataset.var.gaze_data[1][start_index:start_index+4])) start_index += 4 self.df_gaze = pd.DataFrame({ key:pd.Series(value) for key, value in self.panda_data.items()}).T self.df_gaze.columns =['Gaze_Pt_1', 'Gaze_Pt_2', 'Gaze_Pt_3', 'Gaze_Pt_4'] self.df_gaze.to_csv('gaze_file.csv') elif dframe_type == 'imu': ## IMU for sec in range(self.frame_count): # self.panda_data[sec] = list(tuple((sec, sec+2))) self.panda_data[sec] = list(zip(zip(self.dataset.var.imu_data_acc[0][start_index:start_index+4], self.dataset.var.imu_data_acc[1][start_index:start_index+4], self.dataset.var.imu_data_acc[2][start_index:start_index+4]), zip(self.dataset.var.imu_data_gyro[0][start_index:start_index+4], self.dataset.var.imu_data_gyro[1][start_index:start_index+4], self.dataset.var.imu_data_gyro[2][start_index:start_index+4]))) start_index += 4 self.df_imu = pd.DataFrame({ key:pd.Series(value) for key, value in self.panda_data.items()}).T self.df_imu.columns =['IMU_Acc/Gyro_Pt_1', 'IMU_Acc/Gyro_Pt_2', 'IMU_Acc/Gyro_Pt_3', 'IMU_Acc/Gyro_Pt_4'] self.df_imu.to_csv('imu_file.csv')
return dummy datasets = IMU_GAZE_FRAME_DATASET(var.root, frame_size, trim_size) uni_imu_dataset = datasets.imu_datasets n_uni_imu_dataset = normalization(uni_imu_dataset) s_uni_imu_dataset = standarization(uni_imu_dataset) start_index, end_index = 0, 0 for index, subDir in enumerate(sorted(os.listdir(var.root))): if 'imu_Book' in subDir: subDir = subDir + '/' if subDir[-1] != '/' else subDir os.chdir(var.root + subDir) capture = cv2.VideoCapture('scenevideo.mp4') frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) dataset = JSON_LOADER(subDir) imu = dataset.POP_IMU_DATA(frame_count, return_val=True) imu_arr_acc = np.array(dataset.var.imu_data_acc).transpose() imu_arr_gyro = np.array(dataset.var.imu_data_gyro).transpose() dataset = JSON_LOADER(subDir) new_imu = dataset.POP_IMU_DATA(frame_count, cut_short=False, return_val=True) acc_copy = np.array(dataset.var.imu_data_acc).transpose() gyro_copy = np.array(dataset.var.imu_data_gyro).transpose() end_index = start_index + len(acc_copy) print(subDir, start_index, end_index) n_acc = n_uni_imu_dataset[start_index:end_index, :3] n_gyro = n_uni_imu_dataset[start_index:end_index, 3:] s_acc = s_uni_imu_dataset[start_index:end_index, :3] s_gyro = s_uni_imu_dataset[start_index:end_index, 3:] start_index = end_index
class BUILDING_DATASETS: def __init__(self, test_folder): self.var = RootVariables() self.dataset = None self.imu_arr_acc, self.imu_arr_gyro, self.gaze_arr = None, None, None self.train_new, self.test_new = None, None temp = None self.video_file = 'scenevideo.mp4' self.test_folders_num, self.train_folders_num = 0, 0 self.frame_count = 0 self.capture = None self.ret = None self.toggle = 0 self.test_folder = test_folder self.stack_frames = [] self.transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) self.panda_data = {} self.df = None def populate_gaze_data(self, subDir): subDir = subDir + '/' if subDir[-1]!='/' else subDir os.chdir(self.var.root + subDir) capture = cv2.VideoCapture(self.video_file) self.frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) self.dataset = JSON_LOADER(subDir) self.dataset.POP_GAZE_DATA(self.frame_count) self.gaze_arr = np.array(self.dataset.var.gaze_data).transpose() _ = os.system('rm gaze_file.csv') self.panda_data = {} self.create_dataframes(subDir, 'gaze') self.gaze_arr = np.array(self.dataset.var.gaze_data).transpose() temp = np.zeros((self.frame_count*4-self.var.trim_frame_size*4*2, 2)) temp[:,0] = self.gaze_arr[tuple([np.arange(self.var.trim_frame_size*4, self.frame_count*4 - self.var.trim_frame_size*4), [0]])] temp[:,1] = self.gaze_arr[tuple([np.arange(self.var.trim_frame_size*4, self.frame_count*4 - self.var.trim_frame_size*4), [1]])] return temp def load_unified_gaze_dataset(self): ## missing data in imu_lift_s1 self.test_folders_num, self.train_folders_num = 0, 0 print('Building gaze dataset ..') tqdmloader = tqdm(sorted(os.listdir(self.var.root))) for index, subDir in enumerate(tqdmloader): if 'train_' in subDir: tqdmloader.set_description('Train folder: {}'.format(subDir)) self.temp = self.populate_gaze_data(subDir) self.train_folders_num += 1 if self.train_folders_num > 1: self.train_new = np.concatenate((self.train_new, self.temp), axis=0) else: self.train_new = self.temp if 'test_' in subDir: tqdmloader.set_description('Test folder: {}'.format(subDir)) self.temp = self.populate_gaze_data(subDir) self.test_folders_num += 1 if self.test_folders_num > 1: self.test_new = np.concatenate((self.test_new, self.temp), axis=0) else: self.test_new = self.temp print(subDir, len(self.test_new.reshape(-1, 4, 2))) return self.train_new, self.test_new def populate_imu_data(self, subDir): subDir = subDir + '/' if subDir[-1]!='/' else subDir os.chdir(self.var.root + subDir) capture = cv2.VideoCapture(self.video_file) self.frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) self.dataset = JSON_LOADER(subDir) self.dataset.POP_IMU_DATA(self.frame_count, cut_short=True) _ = os.system('rm imu_file.csv') self.panda_data = {} self.create_dataframes(subDir, dframe_type='imu') self.imu_arr_acc = np.array(self.dataset.var.imu_data_acc).transpose() self.imu_arr_gyro = np.array(self.dataset.var.imu_data_gyro).transpose() temp = np.zeros((len(self.imu_arr_acc) , 6)) temp = np.zeros((self.frame_count*4-self.var.trim_frame_size*4, 6)) temp[:,0] = self.imu_arr_acc[tuple([np.arange(self.var.trim_frame_size*2, self.frame_count*4 - self.var.trim_frame_size*2), [0]])] temp[:,1] = self.imu_arr_acc[tuple([np.arange(self.var.trim_frame_size*2, self.frame_count*4 - self.var.trim_frame_size*2), [1]])] temp[:,2] = self.imu_arr_acc[tuple([np.arange(self.var.trim_frame_size*2, self.frame_count*4 - self.var.trim_frame_size*2), [2]])] temp[:,3] = self.imu_arr_gyro[tuple([np.arange(self.var.trim_frame_size*2, self.frame_count*4 - self.var.trim_frame_size*2), [0]])] temp[:,4] = self.imu_arr_gyro[tuple([np.arange(self.var.trim_frame_size*2, self.frame_count*4 - self.var.trim_frame_size*2), [1]])] temp[:,5] = self.imu_arr_gyro[tuple([np.arange(self.var.trim_frame_size*2, self.frame_count*4 - self.var.trim_frame_size*2), [2]])] return temp def load_unified_imu_dataset(self): ## missing data in imu_CoffeeVendingMachine_S2 print('Building IMU dataset ..') tqdmloader = tqdm(sorted(os.listdir(self.var.root))) for index, subDir in enumerate(tqdmloader): if 'train_' in subDir : tqdmloader.set_description('Train folder: {}'.format(subDir)) self.temp = self.populate_imu_data(subDir) self.train_folders_num += 1 if self.train_folders_num > 1: self.train_new = np.concatenate((self.train_new, self.temp), axis=0) else: self.train_new = self.temp if 'test_' in subDir: tqdmloader.set_description('Test folder: {}'.format(subDir)) self.temp = self.populate_imu_data(subDir) self.test_folders_num += 1 if self.test_folders_num > 1: self.test_new = np.concatenate((self.test_new, self.temp), axis=0) else: self.test_new = self.temp print(len(self.test_new.reshape(-1, 4, 6))) return self.train_new, self.test_new def create_dataframes(self, subDir, dframe_type, start_index=0): if dframe_type == 'gaze': ## GAZE for sec in range(self.frame_count): self.panda_data[sec] = list(zip(self.dataset.var.gaze_data[0][start_index:start_index + 4], self.dataset.var.gaze_data[1][start_index:start_index+4])) start_index += 4 self.df_gaze = pd.DataFrame({ key:pd.Series(value) for key, value in self.panda_data.items()}).T self.df_gaze.columns =['Gaze_Pt_1', 'Gaze_Pt_2', 'Gaze_Pt_3', 'Gaze_Pt_4'] self.df_gaze.to_csv('gaze_file.csv') elif dframe_type == 'imu': ## IMU for sec in range(self.frame_count): # self.panda_data[sec] = list(tuple((sec, sec+2))) self.panda_data[sec] = list(zip(zip(self.dataset.var.imu_data_acc[0][start_index:start_index+4], self.dataset.var.imu_data_acc[1][start_index:start_index+4], self.dataset.var.imu_data_acc[2][start_index:start_index+4]), zip(self.dataset.var.imu_data_gyro[0][start_index:start_index+4], self.dataset.var.imu_data_gyro[1][start_index:start_index+4], self.dataset.var.imu_data_gyro[2][start_index:start_index+4]))) start_index += 4 self.df_imu = pd.DataFrame({ key:pd.Series(value) for key, value in self.panda_data.items()}).T self.df_imu.columns =['IMU_Acc/Gyro_Pt_1', 'IMU_Acc/Gyro_Pt_2', 'IMU_Acc/Gyro_Pt_3', 'IMU_Acc/Gyro_Pt_4'] self.df_imu.to_csv('imu_file.csv') def create_circular_mask(self, h, w, center=None, radius=None): if center is None: # use the middle of the image center = (int(w/2), int(h/2)) if radius is None: # use the smallest distance between the center and image walls radius = 30 #min(center[0], center[1], w-center[0], h-center[1]) Y, X = np.ogrid[:h, :w] dist_from_center = np.sqrt((X - center[0])**2 + (Y-center[1])**2) mask = dist_from_center <= radius return mask def load_heatmap(self, joints, n_joints, trim_size, index): joints = cv2.cvtColor(joints, cv2.COLOR_BGR2RGB)[:,:,0] h, w = joints.shape y1 = np.zeros((h, w, n_joints)) padding = 40 mask = None # x, y, = int(coordinates[0]*512), int(coordinates[1]*288) for j in range(5): y2 = np.copy(y1) try: gpts = list(map(literal_eval, self.df[trim_size-4+index+j, 1:])) except Exception as e: print(e) telem = 4 for item in gpts: if (item[0] + item[1]) == 0: telem -= 1 if telem > 0: coordinates = [sum(y) / telem for y in zip(*gpts)] center = (int(coordinates[0]*512), int(coordinates[1]*288)) if j > 0 and coordinates[0] != 0.0: mask += self.create_circular_mask(h, w, center) else: mask = self.create_circular_mask(h, w, center) if mask is None: mask = self.create_circular_mask(h, w, radius=0) heatmap = np.zeros(joints.shape) heatmap[mask] = 1.0 if heatmap.sum() > 0 : y2[:, :, 0] = self.decay_heatmap(heatmap, sigma2=30) y1 += y2 return y1 def decay_heatmap(self, heatmap, sigma2=10): """ Args heatmap : WxH matrix to decay sigma2 : (Default value = 1) Returns Heatmap obtained by gaussian-blurring the input """ heatmap = cv2.GaussianBlur(heatmap, (0, 0), sigma2) # heatmap /= np.sum(heatmap) # heatmap /= np.max(heatmap) # keep the max to 1 return heatmap def load_heatmap_dataset(self, reset_dataset=0): ## INCLUDES THE LAST FRAME if reset_dataset == 1: print('Deleting the old dataset .. ') _ = os.system('rm ' + os.path.dirname(os.path.realpath(__file__)) + '/' + 'heatmap_trainImg.csv') _ = os.system('rm ' + os.path.dirname(os.path.realpath(__file__)) + '/' + 'heatmap_testImg.csv') _ = os.system('rm -r ' + self.var.root + 'heatmap_training_images') _ = os.system('rm -r ' + self.var.root + 'heatmap_testing_images') _ = os.system('mkdir ' + self.var.root + 'heatmap_training_images') _ = os.system('mkdir ' + self.var.root + 'heatmap_testing_images') train_frame_index, test_frame_index = 0, 0 trainpaths, testpaths = [], [] print("Building heatmap dataset ..") tqdmloader = tqdm(sorted(os.listdir(self.var.root))) for index, subDir in enumerate(tqdmloader): if 'train_' in subDir : tqdmloader.set_description('Train folder: {}'.format(subDir)) _ = os.system('mkdir ' + self.var.root + 'heatmap_training_images/' + subDir) total_frames = 0 subDir = subDir + '/' if subDir[-1]!='/' else subDir os.chdir(self.var.root + subDir) self.capture = cv2.VideoCapture(self.video_file) self.frame_count = int(self.capture.get(cv2.CAP_PROP_FRAME_COUNT)) self.df = pd.read_csv('gaze_file.csv').to_numpy() for i in range(len(self.df)): try: _ = (list(map(literal_eval, self.df[i, 1:]))) except: indexes = [] for j in range(1, len(self.df[i])): if 'nan' in self.df[i][j]: self.df[i][j] = '(0.0, 0.0)' self.capture.set(cv2.CAP_PROP_POS_FRAMES,self.var.trim_frame_size) for i in range(self.frame_count - 100): _, frame = self.capture.read() frame = cv2.resize(frame, (512, 288)) heatmapshow = None try: x = self.load_heatmap(frame, 1, self.var.trim_frame_size, i-4) heatmapshow = cv2.normalize(x, heatmapshow, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U) heatmapshow = cv2.applyColorMap(heatmapshow, cv2.COLORMAP_JET) # frame = cv2.addWeighted(heatmapshow, 0.5, frame, 0.7, 0) # cv2.imshow('image', x) # # cv2.waitKey(0) # if cv2.waitKey(1) & 0xFF == ord('q'): # break except Exception as e: print(e) path = self.var.root + 'heatmap_training_images/' + subDir + 'image_' + str(train_frame_index) + '.jpg' cv2.imwrite(path, heatmapshow) # self.create_clips(self.capture, train_frame_index, 'training_images') train_frame_index += 1 trainpaths.append(path) if 'test_' in subDir: tqdmloader.set_description('Test folder: {}'.format(subDir)) _ = os.system('mkdir ' + self.var.root + 'heatmap_testing_images/' + subDir) total_frames = 0 subDir = subDir + '/' if subDir[-1]!='/' else subDir os.chdir(self.var.root + subDir) self.capture = cv2.VideoCapture(self.video_file) self.frame_count = int(self.capture.get(cv2.CAP_PROP_FRAME_COUNT)) # _ = os.system('rm ' + str(self.var.frame_size) + '_framesExtracted_data_' + str(self.var.trim_frame_size) + '.npy') self.df = pd.read_csv('gaze_file.csv').to_numpy() for i in range(len(self.df)): try: _ = (list(map(literal_eval, self.df[i, 1:]))) except: indexes = [] for j in range(1, len(self.df[i])): if 'nan' in self.df[i][j]: self.df[i][j] = '(0.0, 0.0)' self.capture.set(cv2.CAP_PROP_POS_FRAMES,self.var.trim_frame_size) for i in range(self.frame_count - 100): ## because we need frame no. 149 to stack with frame 150, to predict for frame no. 150 _, frame = self.capture.read() frame = cv2.resize(frame, (512, 288)) # (398, 224) heatmapshow = None try: x = self.load_heatmap(frame, 1, self.var.trim_frame_size, i-4) heatmapshow = cv2.normalize(x, heatmapshow, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U) heatmapshow = cv2.applyColorMap(heatmapshow, cv2.COLORMAP_JET) # frame = cv2.addWeighted(heatmapshow, 0.5, frame, 0.7, 0) except Exception as e: print(e) path = self.var.root + 'heatmap_testing_images/' + subDir + 'image_' + str(test_frame_index) + '.jpg' cv2.imwrite(path, heatmapshow) # self.create_clips(self.capture, test_frame_index, 'testing_images') test_frame_index += 1 testpaths.append(path) print(test_frame_index) dict = {'image_paths': trainpaths} df = pd.DataFrame(dict) # print(os.path.dirname(os.path.realpath(__file__))) df.to_csv(self.var.root + 'heatmap_trainImg.csv') dict = {'image_paths':testpaths} df = pd.DataFrame(dict) df.to_csv(self.var.root + 'heatmap_testImg.csv') def create_clips(self, cap, index, type): fourcc = cv2.VideoWriter_fourcc(*'MPEG') out = cv2.VideoWriter('/Users/sanketsans/Downloads/Pavis_Social_Interaction_Attention_dataset/' + type + '/output_' + str(index) + '.avi', fourcc, 1.0, (224,224)) chunks = None for i in range(5): _, frame = cap.read() frame = cv2.resize(frame, (224, 224)) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = self.transforms(frame) frame = frame.unsqueeze(dim=3) chunks = torch.cat((chunks, frame), axis=3) if i > 0 else frame out.write(frame) cap.set(cv2.CAP_PROP_POS_FRAMES,50+index-4) out.release() def load_unified_frame_dataset(self, reset_dataset=0): ## INCLUDES THE LAST FRAME if reset_dataset == 1: # print('Deleting the old dataset .. ') # _ = os.system('rm -r ' + self.var.root + 'training_images') # _ = os.system('rm -r ' + self.var.root + 'testing_images') # # _ = os.system('mkdir ' + self.var.root + 'training_images') # _ = os.system('mkdir ' + self.var.root + 'testing_images') train_frame_index, test_frame_index = 0, 0 trainpaths, testpaths = [], [] print("Building Image dataset ..") tqdmloader = tqdm(sorted(os.listdir(self.var.root))) for index, subDir in enumerate(tqdmloader): if 'washands' in subDir : tqdmloader.set_description('Train folder: {}'.format(subDir)) _ = os.system('rm -r ' + self.var.root + 'training_images/' + subDir) _ = os.system('mkdir ' + self.var.root + 'training_images/' + subDir) total_frames = 0 subDir = subDir + '/' if subDir[-1]!='/' else subDir os.chdir(self.var.root + subDir) self.capture = cv2.VideoCapture(self.video_file) self.frame_count = int(self.capture.get(cv2.CAP_PROP_FRAME_COUNT)) self.capture.set(cv2.CAP_PROP_POS_FRAMES,self.var.trim_frame_size - 1) for i in range(self.frame_count - 100 + 4): ## because we need frame no. 149 to stack with frame 150, to predict for frame no. 150 _, frame = self.capture.read() frame = cv2.resize(frame, (512, 288)) # frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) path = self.var.root + 'training_images/' + subDir + 'image_' + str(train_frame_index) + '.jpg' cv2.imwrite(path, frame) # self.create_clips(self.capture, train_frame_index, 'training_images') train_frame_index += 1 trainpaths.append(path) if 'test_' in subDir: tqdmloader.set_description('Test folder: {}'.format(subDir)) _ = os.system('mkdir ' + self.var.root + 'testing_images/' + subDir) total_frames = 0 subDir = subDir + '/' if subDir[-1]!='/' else subDir os.chdir(self.var.root + subDir) self.capture = cv2.VideoCapture(self.video_file) self.frame_count = int(self.capture.get(cv2.CAP_PROP_FRAME_COUNT)) # _ = os.system('rm ' + str(self.var.frame_size) + '_framesExtracted_data_' + str(self.var.trim_frame_size) + '.npy') self.capture.set(cv2.CAP_PROP_POS_FRAMES,self.var.trim_frame_size - 1) for i in range(self.frame_count - 100 + 4): ## because we need frame no. 149 to stack with frame 150, to predict for frame no. 150 _, frame = self.capture.read() frame = cv2.resize(frame, (512, 288)) # (398, 224) # frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) path = self.var.root + 'testing_images/' + subDir + 'image_' + str(test_frame_index) + '.jpg' cv2.imwrite(path, frame) # self.create_clips(self.capture, test_frame_index, 'testing_images') test_frame_index += 1 testpaths.append(path) print(test_frame_index) os.chdir(self.var.root) dict = {'image_paths': trainpaths} df = pd.DataFrame(dict) df.to_csv(self.var.root + '/trainImg.csv') dict = {'image_paths':testpaths} df = pd.DataFrame(dict) df.to_csv(self.var.root + '/testImg.csv')