예제 #1
0
#dataset_info = load_all_data()
#data_set_x = dataset_info[0]
#maxBatchSize = numpy.int_(dataset_info[1])
#batch_size = maxBatchSize
#n_train_batches = 28
#n_valid_batches = 1
#n_test_batches = 1

datapathpre = '/vega/stats/users/sl3368/Data_LC/LowNormData/'
dataset_info = load_class_data_batch(datapathpre + 'LC_stim_5.mat')
stim = dataset_info[0]
data_set_x = theano.shared(stim, borrow=True)

#validation and testing - for now, use last one
dataset_info_vt = load_class_data_vt(datapathpre + 'LC_stim_15.mat')
data_set_x_vt = dataset_info_vt[0]

batch_size = 2000
n_batches = data_set_x.shape[0].eval()/batch_size
print 'n_batches: '+str(n_batches)
n_val_batches = 10
n_test_batches = 10

n_train_batches = n_batches #data_set_x.shape[0].eval()/batch_size - n_val_batches - n_test_batches
print 'Number of batches for training: '+str(n_train_batches)
all_inds = numpy.arange(n_batches)
numpy.random.shuffle(all_inds);
train_inds = all_inds[0:n_train_batches]
val_inds = numpy.arange(n_val_batches)#all_inds[n_train_batches:n_train_batches+n_val_batches] #numpy.random.choice(n_batches,n_val_batches,replace=False)
test_inds = numpy.arange(n_val_batches)+n_val_batches
예제 #2
0
n_val_batches = 200
n_test_batches = 10

#filepath for saving parameters
savefilename = '/vega/stats/users/sl3368/rnn_code/saves/params/lstm/3_layer/1000_1000_1000/5th_5_6.save'

################################################
# Load Data
################################################
dataset_info = load_class_data_batch(datapathpre + 'LC_stim_5.mat')
stim = dataset_info[0]
data_set_x = theano.shared(stim, borrow=True)

#validation and testing - for now, use last one
dataset_info_vt = load_class_data_vt(datapathpre + 'LC_stim_15.mat')
data_set_x_vt = dataset_info_vt[0]

n_batches = data_set_x.shape[0].eval() / song_size

n_train_batches = n_batches
print 'Number of songs in single matlab chunk: ' + str(n_train_batches)
all_inds = numpy.arange(n_batches)
numpy.random.shuffle(all_inds)
train_inds = all_inds[0:n_train_batches]
val_inds = numpy.arange(n_val_batches)
test_inds = numpy.arange(n_val_batches) + n_val_batches

######################
# BUILD ACTUAL MODEL #
######################