Module for reading and parsing specifications file for FRET data assimilation. Created by Nirag Kadakia at 9:30 05-18-2018 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/. """ import scipy as sp import os from local_methods import def_data_dir from utils import merge_two_dicts data_dir = def_data_dir() def read_specs_file(data_flag, data_dir=data_dir): """ Function to read a specifications file. Module to gather information from specifications file about how a particular run is to be performed for FRET fake data generation and FRET data assimilation. Specs file should have format .txt and the format is as listed here: data_var nT 3 est_var set_param_bounds bounds_Tar_3 est_spec est_type VA
Created by Nirag Kadakia at 21:46 10-26-2017 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/. """ import scipy as sp from local_methods import def_data_dir from matplotlib import rc rc('font', **{'family': 'serif', 'serif': ['Computer Modern']}) rc('text', usetex=True) import matplotlib.pyplot as plt DATA_DIR = def_data_dir() def opt_kernel_pred_fig(dt, kernel_length, Tt_PW): fig = plt.figure() fig.set_size_inches(6, 6) plt.subplot(311) plt.title(r'Mean subtracted stimulus') plt.xlabel(r'Time (s)') plt.ylabel(r'$\mu m$') plt.xlim(Tt_PW[0], Tt_PW[-1]) plt.subplot(312) plt.title(r'Mean subtracted FRET prediction')
International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/. """ import os import sys sys.path.append('../src') from local_methods import def_data_dir from load_data import load_stim_file, load_meas_file from save_data import save_meas_plots, save_stim_plots from single_cell_FRET import single_cell_FRET print 'Plotting stimuli...' stim_path = '%s/stim' % def_data_dir() data_flags = [] for (dirpath, dirnames, filenames) in os.walk(stim_path): for filename in filenames: if filename.endswith('.stim'): data_flags.append(os.path.splitext(filename)[0]) for data_flag in data_flags: stim_Tt = load_stim_file(data_flag) scF = single_cell_FRET() scF.Tt = stim_Tt[:, 0] scF.stim = stim_Tt[:, 1:] save_stim_plots(scF, data_flag) print 'Plotting measurements...'