import h5py import keras import numpy as np import os import pandas as pd import pescador import tensorflow as tf import time import oyaml as yaml import localmodule from models import create_flat_singletask_coarse_model from keras.optimizers import Adam # Define constants. train_data_dir = localmodule.get_train_data_dir() train_dataset_name = localmodule.get_train_dataset_name() valid_data_dir = localmodule.get_valid_data_dir() valid_dataset_name = localmodule.get_valid_dataset_name() models_dir = localmodule.get_models_dir() n_input_hops = 104 n_filters = [24, 48, 48] kernel_size = [5, 5] pool_size = [2, 4] n_hidden_units = 64 # Read command-line arguments. parser = argparse.ArgumentParser() parser.add_argument('aug_kind_str') parser.add_argument('trial_str') parser.add_argument('--lr', type=float, default=1e-4) parser.add_argument('--base-wd', type=float, default=1e-4)
import datetime import h5py import librosa import os import sys import time import localmodule # Define constants. dataset_name = localmodule.get_train_dataset_name() sample_rate = localmodule.get_sample_rate() args = sys.argv[1:] data_dir = args[0] aug_str = args[1] instance_id = int(args[2]) instance_str = str(instance_id) if aug_str == "original": instanced_aug_str = aug_str else: instanced_aug_str = "-".join([aug_str, instance_str]) pcen_settings = localmodule.get_pcen_settings() # Print header. start_time = int(time.time()) print(str(datetime.datetime.now()) + " Start.") print("Computing per-channel energy normalization (PCEN for clips in " + data_dir) print("Augmentation: " + instanced_aug_str + ".") print("") print("h5py version: {:s}".format(h5py.__version__))