def last_ten_blows():
    global markerLength
    global file_name
    global matrix_coefficients
    global distortion_coefficients
    #name csv

    #name_csv_dist = n_dist +".csv"

    #name_csv_blow = n_blow +".csv"

    name_csv_check = file_name + ".csv"

    #define frame rate limit
    frame_rate = 10

    #define size of ArUco
    #markerLength = 0.2 #m

    #for track from camera calibration
    #matrix_coefficients = [[394.25885619, 0.00000000e+00, 176.79297187, ],  # From calibrte camera
    #                      [0.00000000e+00, 394.43979784, 228.18139903, ],
    #                     [0.00000000e+00, 0.00000000e+00, 1.00000000e+00]]
    #distortion_coefficients = [[4.26629830e-01, -3.32281005e+00, -6.00006033e-04, -3.28199014e-03, 8.39347057e+00]]  # From calibrte camera

    def button_pressed(sender):
        track(matrix_coefficients, distortion_coefficients, markerLength,
              frame_rate)  # start to track

    def button_change_data(sender):
        global markerLength
        global file_name
        global matrix_coefficients
        global distortion_coefficients
        setting()

    def button_r_pressed(sender):  #reset zero
        global tvec_ini
        global tvec
        global blow
        global dist
        global data_tvecs
        global value_dis
        global value_blow
        global pile_drive
        global cX
        global cY
        global cX_ini
        global cY_ini
        global check

        data_tvecs = []
        value_dis = []
        value_blow = []
        pile_drive = []
        check = []
        tvec_ini = tvec
        dist = 0
        blow = 0

        cX_ini = cX
        cY_ini = cY

    # In[ ]:

    def print_pressed(sender):  #Editing data collection and handling
        #many file to check the data if success it will be only file to release
        global value_blow
        global data_blow
        global data_value_dis
        #global data_check
        global name_csv_dist
        global name_csv_blow
        global name_csv_check

        check = pd.Series(value_blow)
        check = np.float32(check.unique())
        data_blow = pd.DataFrame(value_blow, columns=['avg blow'])
        data_check = pd.DataFrame(check, columns=['check'])
        #data_value_dis.to_csv(name_csv_dist)
        #data_blow.to_csv(name_csv_blow)
        data_check.to_csv(name_csv_check)

    # In[1]:

    def track(matrix_coefficients, distortion_coefficients, markerLength,
              frame_rate):
        print('check markerLengt', markerLength)
        global cX_ini
        global cY_ini
        global cY
        global cX
        global data_blow
        global data_value_dis
        global data_check
        global tvec_ini
        global tvec
        global blow
        global dist
        global data_tvecs
        global value_dis
        global value_blow
        global pile_drive
        global i
        data_tvecs = []  # Prepare to add tvec
        value_dis = []  # Prepare to get result distance(scalar) unit meter
        value_blow = []
        sum_tvec = 0
        tvec_ini = np.array([0, 0, 0])
        tvec = np.array([0, 0, 0])
        dist = 0
        prev = 0
        blow = 0.00
        cX = 0
        cY = 0
        cX_ini = 300
        cY_ini = 50
        check = []

        while cap.isOpened():
            #convert image to gray scale image
            #Capture frame-by-frame
            time_elapsed = time.time() - prev
            ret, frame = cap.read()

            #operations on the frame come here
            if not ret:
                continue

            if time_elapsed > 1. / frame_rate:
                prev = time.time()
                #frame = cv2.resize(frame, (4000, 5000))
                frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                gray = cv2.cvtColor(frame,
                                    cv2.COLOR_BGR2GRAY)  # Change grayscale
                aruco_dict = aruco.Dictionary_get(
                    aruco.DICT_5X5_250)  # Use 5x5 dictionary to find markers
                parameters = aruco.DetectorParameters_create(
                )  # Marker detection parameters
                # lists of ids and the corners beloning to each id
                corners, ids, rejected_img_points = aruco.detectMarkers(
                    gray,
                    aruco_dict,
                    parameters=parameters,
                    cameraMatrix=np.float32(matrix_coefficients),
                    distCoeff=np.float32(distortion_coefficients))
                # calculate(ids,corners,matrix_coefficients,distortion_coefficients,frame)
                if np.all(ids is not None
                          ):  # If there are markers found by detector
                    for i in range(0, len(ids)):  # Iterate in markers
                        # Estimate pose of each marker and return the values rvec and tvec---different from camera coefficients
                        rvec, tvec, markerPoints = aruco.estimatePoseSingleMarkers(
                            corners[i], markerLength,
                            np.float32(matrix_coefficients),
                            np.float32(distortion_coefficients))

                        (rvec - tvec).any(
                        )  # get rid of that nasty numpy value array error
                        aruco.drawDetectedMarkers(
                            frame, corners)  # Draw A square around the markers
                        #aruco.drawAxis(frame, np.float32(matrix_coefficients), np.float32(distortion_coefficients),np.float32(rvec), np.float32(tvec), 0.01)  # Draw Axis

                        data_tvecs.append(
                            tvec)  # get every data of tvec in array data_tvecs
                        length = len(
                            data_tvecs)  # For easy to calculate equation
                        if length > 1:
                            diff = data_tvecs[
                                length -
                                1] - tvec_ini  # Find distance between tvec(vector)
                            sum_tvec = sqrt(np.sum(
                                diff**2))  # convert vector to scalar
                            dist = sum_tvec
                            value_dis.append(
                                np.round(sum_tvec, 3)
                            )  # get the distance data(scalar)  in array value
                        #calculate move per blow
                        length = len(value_dis)

                        if length > 10:
                            pile_drive = []
                            for x in range(10):
                                pile_drive.append(value_dis[length - x - 1])
                            #print('pile drive before', pile_drive)

                            if np.std(pile_drive) <= .005:
                                #print('pile drive after', pile_drive)
                                blow = float(np.average(pile_drive))
                                value_blow.append(np.round(blow, 4))
                                check = pd.Series(value_blow)
                                check = check.unique()
                            value_dis = []
                            pile_drive = []
                if len(corners) > 0:
                    # flatten the ArUco IDs list
                    ids = ids.flatten()
                    # loop over the detected ArUCo corners
                    for (markerCorner, markerID) in zip(corners, ids):
                        # extract the marker corners (which are always returned in
                        # top-left, top-right, bottom-right, and bottom-left order)
                        find_center = corners.copy()
                        find_center = markerCorner.reshape((4, 2))
                        (topLeft, topRight, bottomRight,
                         bottomLeft) = find_center
                        # convert each of the (x, y)-coordinate pairs to integers
                        topRight = (int(topRight[0]), int(topRight[1]))
                        bottomRight = (int(bottomRight[0]),
                                       int(bottomRight[1]))
                        bottomLeft = (int(bottomLeft[0]), int(bottomLeft[1]))
                        topLeft = (int(topLeft[0]), int(topLeft[1]))
                        # draw the bounding box of the ArUCo detection
                        #cv2.line(frame, topLeft, topRight, (0, 255, 0), 2)
                        #cv2.line(frame, topRight, bottomRight, (0, 255, 0), 2)
                        #cv2.line(frame, bottomRight, bottomLeft, (0, 255, 0), 2)
                        #cv2.line(frame, bottomLeft, topLeft, (0, 255, 0), 2)
                        # compute and draw the center (x, y)-coordinates of the ArUco
                        # marker
                        cX = int((topLeft[0] + bottomRight[0]) / 2.0)
                        cY = int((topLeft[1] + bottomRight[1]) / 2.0)
                        cv2.circle(frame, (cX, cY), 4, (0, 0, 255), -1)
                        # draw the ArUco marker ID on the image
                        cv2.putText(frame, str(markerID),
                                    (topLeft[0], topLeft[1] - 15),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0),
                                    2)
                        cv2.putText(frame, str(topRight),
                                    (topRight[0], topRight[1] - 15),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0),
                                    2)
                        cv2.circle(frame, (cX_ini, cY_ini), 4, (0, 255, 0), -1)

                fps = 1 / time_elapsed
                fps = np.round(fps, 1)
                cv2.putText(frame, 'F5PS  ' + str(fps), (50, 75),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

                data_value_dis = pd.DataFrame(value_dis,
                                              columns=['real Distance'])
                #data_blow = pd.DataFrame(value_blow, columns = ['avg blow'])
                #data_check = pd.DataFrame(check, columns = ['check'])
                #for gui
                image_in = frame
                image_in = Image.fromarray(image_in)
                vdo.image = image_in
                diff_text = "{:.3f}".format(float(dist))
                blow_show = "{:.3f}".format(float(blow))
                label1.text = 'distance= ' + diff_text + ' m'
                label2.text = ""
                #label2.text ='deform per blows='+blow_show + ' m'
                #label3.text ='deform per blows realtime ='+ str(np.round(blow,4))+ ' m'

        return

    cap = cv2.VideoCapture(0)  # Get the camera source
    #GUI Part
    view = ui.View()
    view.background_color = ui.COLOR_SYSTEM_BACKGROUND
    #GUI botton
    button = ui.Button(title="record")
    button.size = (100, 50)
    button.center = (view.width / 3 + 175, (view.height / 2 + 300))
    button.flex = [
        ui.FLEXIBLE_TOP_MARGIN, ui.FLEXIBLE_BOTTOM_MARGIN,
        ui.FLEXIBLE_LEFT_MARGIN, ui.FLEXIBLE_RIGHT_MARGIN
    ]
    button.action = button_pressed
    view.add_subview(button)

    button_r = ui.Button(title="reset/start")
    button_r.size = (100, 50)
    button_r.center = (view.width / 3 - 50, (view.height / 2 + 300))
    button_r.flex = [
        ui.FLEXIBLE_TOP_MARGIN, ui.FLEXIBLE_BOTTOM_MARGIN,
        ui.FLEXIBLE_LEFT_MARGIN, ui.FLEXIBLE_RIGHT_MARGIN
    ]
    button_r.action = button_r_pressed
    view.add_subview(button_r)

    button_pt = ui.Button(title="print")
    button_pt.size = (100, 50)
    button_pt.center = (view.width / 2, (view.height / 2 + 300))
    button_pt.flex = [
        ui.FLEXIBLE_TOP_MARGIN, ui.FLEXIBLE_BOTTOM_MARGIN,
        ui.FLEXIBLE_LEFT_MARGIN, ui.FLEXIBLE_RIGHT_MARGIN
    ]
    button_pt.action = print_pressed
    view.add_subview(button_pt)

    button_ch = ui.Button(title="setting")
    button_ch.size = (100, 30)
    button_ch.center = (view.width / 2 + 160, 20)
    button_ch.flex = [
        ui.FLEXIBLE_TOP_MARGIN, ui.FLEXIBLE_BOTTOM_MARGIN,
        ui.FLEXIBLE_LEFT_MARGIN, ui.FLEXIBLE_RIGHT_MARGIN
    ]
    button_ch.action = button_change_data
    view.add_subview(button_ch)

    #show distance
    label1 = ui.Label()
    label1.size = (view.width, 40)
    label1.text_alignment = ui.TEXT_ALIGNMENT_CENTER
    label1.flex = [ui.FLEXIBLE_WIDTH]
    label1.text = "Pile Drive Develop ver.11"
    view.add_subview(label1)

    #show the size of marker
    label2 = ui.Label()
    label2.size = (view.width, 50)
    label2.text_alignment = ui.TEXT_ALIGNMENT_CENTER
    label2.flex = [ui.FLEXIBLE_WIDTH]
    label2.center = (view.width / 2, 150)
    label2.text = "|   the size of marker  " + str(markerLength) + "   m.   |"
    view.add_subview(label2)

    #label3 =ui.Label()
    #label3.size=(view.width,50)
    #label3.text_alignment=ui.TEXT_ALIGNMENT_CENTER
    #label3.flex = [ui.FLEXIBLE_WIDTH]
    #label3.center = (view.width/2, 60)
    #label3.text = "blow realtime"
    #view.add_subview(label3)

    #show location
    label3 = ui.Label()
    label3.size = (view.width / 2 + 100, 70)
    label3.text_alignment = ui.TEXT_ALIGNMENT_CENTER
    label3.flex = [ui.FLEXIBLE_WIDTH]
    label3.center = (view.width / 2, 80)
    loc.start_updating()
    label3.text = str(loc.get_location())
    view.add_subview(label3)

    #Guidance on use
    label4 = ui.Label()
    label4.size = (view.width, 550)
    label4.text_alignment = ui.TEXT_ALIGNMENT_CENTER
    label4.flex = [ui.FLEXIBLE_WIDTH]
    label4.text = "Guidance on use\n" + "------------------------\n" + "1.press record to open the camera\n" + "2.press reset/start for start the program\n or reset the data" + "\n3. You can press print to release data on iClound\n " + "------------------------\n" + "note: before you record please check the size \nof marker again"
    view.add_subview(label4)

    #Capture display
    vdo = ui.ImageView()
    vdo.size = (400, 425)
    vdo.center = (view.width / 2, view.height / 2 + 30)
    vdo.flex = [
        ui.FLEXIBLE_TOP_MARGIN, ui.FLEXIBLE_BOTTOM_MARGIN,
        ui.FLEXIBLE_LEFT_MARGIN, ui.FLEXIBLE_RIGHT_MARGIN
    ]
    view.add_subview(vdo)

    ui.show_view(view, ui.PRESENTATION_MODE_SHEET)
예제 #2
0
#label3 =ui.Label()
#label3.size=(view.width,50)
#label3.text_alignment=ui.TEXT_ALIGNMENT_CENTER
#label3.flex = [ui.FLEXIBLE_WIDTH]
#label3.center = (view.width/2, 60)
#label3.text = "blow realtime"
#view.add_subview(label3)

#show location
label3 =ui.Label()
label3.size=(view.width/2+100,70)
label3.text_alignment=ui.TEXT_ALIGNMENT_CENTER
label3.flex = [ui.FLEXIBLE_WIDTH]
label3.center = (view.width/2,80)
loc.start_updating()
label3.text = str(loc.get_location())
view.add_subview(label3)

#Guidance on use
label4 =ui.Label()
label4.size=(view.width,550)
label4.text_alignment=ui.TEXT_ALIGNMENT_CENTER
label4.flex = [ui.FLEXIBLE_WIDTH]
label4.text = "Guidance on use\n"+"------------------------\n"+"1.press record to open the camera\n"+"2.press reset/start for start the program\n or reset the data" + "\n3. You can press print to release data on iClound\n "+"------------------------\n"+"note: before you record please check the size \nof marker again and check this program link on your iCloud"
view.add_subview(label4)
       
#Capture display
vdo =ui.ImageView()
vdo.size = (400, 425)
vdo.center = (view.width/2, view.height/2+30)
예제 #3
0
"""
An example of how to access the device's location.
"""

import location
from time import sleep

location.start_updating()

while True:
    print(f"\rCurrent location: {location.get_location()}", end="")
    sleep(1)