예제 #1
0
파일: test_lof.py 프로젝트: minhhx/pylof
def test_k_distance():
    instances = ((1,1),(2,2),(3,3))
    d = lof.k_distance(1,(2,2),instances)
    assert d == (0.0, [(2,2)])
    d = lof.k_distance(1,(2.2,2.2),instances)
    assert d == (0.20000000000000018, [(2,2)])
    d = lof.k_distance(1,(2.5,2.5),instances)
    assert d == (0.5, [(2,2),(3,3)])
예제 #2
0
def cal_C3(instance):
    k_inf = kinf[instances.index(instance)]
    k_avg = (2 + k_inf) / 2

    (k1, neighbours) = k_distance(k_inf + 1, instance, instances)
    (k2, neighbours) = k_distance(k_avg, instance, instances)

    c3 = k1 / k2
    return c3
예제 #3
0
파일: test_lof.py 프로젝트: lamanchy/ml
def test_k_distance():
    instances = np.array(((1, 1), (2, 2), (3, 3)))
    d = lof.k_distance(1, (2, 2), instances)
    assert np.allclose(d[0], 0.0)
    assert np.allclose(d[1], np.array([(2, 2)]))

    d = lof.k_distance(1, (2.2, 2.2), instances)
    assert np.allclose(d[0], 0.28284271247461928)
    assert np.allclose(d[1], np.array([(2, 2)]))

    d = lof.k_distance(1, (2.5, 2.5), instances)
    assert np.allclose(d[0], 0.70710678118654757)
    assert np.allclose(d[1], np.array([(2, 2), (3, 3)]))

    d = lof.k_distance(5, (2.2, 2.2), instances)
    assert np.allclose(d[0], 1.6970562748477143)
    assert np.allclose(d[1], np.array([(2, 2), (3, 3), (1, 1)]))
예제 #4
0
def update():
    # 计算邻接矩阵M
    for instance in instances:
        instances_value_backup = list(instances)
        instances_value_backup.remove(instance)

        (k_distance_value,
         neighbours) = k_distance(len(instances_value_backup), instance,
                                  instances_value_backup)
        M[instances.index(instance)] = neighbours