from flask import Flask, render_template, request from flask_cors import CORS from flask_socketio import SocketIO, emit from logger import getlogger from settings import Settings import nltk from flickrapi import FlickrAPI import sys import timeit import urllib.request import json logger = getlogger(__name__) settings = Settings app = Flask(__name__, template_folder='html/templates', static_folder='html/static') CORS(app) socketio = SocketIO(app) app.debug = False flickr = FlickrAPI('c6a2c45591d4973ff525042472446ca2', '202ffe6f387ce29b', format='parsed-json') @app.route('/nltk', methods=['POST']) def nltk_process():
import os, sys, pickle, gzip, json, shutil, base64 #import umsgpack try: from StringIO import StringIO as BytesIO except ImportError: from io import StringIO from io import BytesIO from PySide.QtCore import QByteArray, QIODevice, QBuffer from ghost import Ghost import logging from logger import getlogger logger = getlogger() appdir = os.path.abspath( os.path.join(os.path.dirname(__file__), "..") ) def main(url, output, option={}): result = { "error":[], "page":{}, "resources":[], "capture":None, } #savedir = appdir + "/artifacts/ghost/" + output #dump = savedir + "/ghost.pkl" savedir = os.path.join(appdir, "artifacts/ghost")
if args.fsr_enabled: print('Training Feature Super Resolution GAN model') print('\tLow resolution scaling = {} x {}'.format(args.low_ratio, args.low_ratio)) # FSR-GAN model generator = FSR_Generator() discriminator = FSR_Discriminator() optimizer_G = optim.Adam(generator.parameters(), lr=args.lr) optimizer_D = optim.Adam(discriminator.parameters(), lr=args.lr) generator.cuda() discriminator.cuda() # Logger logger = getlogger(args.log_dir + '/FSR-GAN_{}_LOW_{}' .format(args.dataset, str(args.low_ratio))) for arg in vars(args): logger.debug('{} - {}'.format(str(arg), str(getattr(args, arg)))) logger.debug( '\nTraining FSR-GAN model, Low resolution of {}x{}'.format(str(args.low_ratio), str(args.low_ratio))) logger.debug('\t on ' + args.dataset.upper() + ' dataset, with hyper parameters above\n\n') # training_FSR(net, generator, discriminator, optimizer_G, optimizer_D, args.focal_loss_r, # args.classes, args.lr, args.lr_decay, args.epochs, args.ten_batch_eval, # train_loader, eval_train_loader, eval_validation_loader, num_training, num_validation, # args.low_ratio, args.result, logger, args.vgg_gap, args.save) training_Disc(teacher_net, net, optimizer, discriminator, optimizer_D, args.w_clip, args.lr, args.lr_decay, args.epochs, args.ten_batch_eval, train_loader, eval_train_loader, eval_validation_loader, num_training, num_validation,
import logger log=logger.getlogger() log.info('jeevan')
import logger import textfile import time import directmove import xmlhelper import os log = logger.getlogger('mylogger') rootdir = "/alfresco_content/OneSearch/Physical_Resources/LMS" # rootdir = raw_input("Enter Path:") # if len(rootdir) <= 0: # rootdir = "/alfresco_content/OneSearch/Physical_Resources/LMS" print ("1. Move by Textfile") print ("2. Move directly") print ("3. Generate sample metadata files") choice = raw_input("enter choice:") if choice == "1": txtfile = raw_input("Enter text file:") if len(txtfile) <= 0: txtfile = "textfiles/alf_path.txt" start = time.time() counter = textfile.move_by_textfile(txtfile, rootdir) end = time.time() speed = counter / (end - start) log.info(txtfile + " processed :" + str(counter) + " Speed: " + str(int(speed)) + "/second") elif choice == "2": start = time.time()
#encoding:utf-8 """ Some celery tasks here """ import celery import celeryconfig from logger import getlogger logger = getlogger(__name__) app = celery.Celery() app.config_from_object(celeryconfig) @app.task def add(x, y): """ return x + y """ z = x + y logger.info('{} + {} = {}'.format(x, y, z)) return 'done', z
import os, sys, pickle, gzip, json, shutil, base64 #import umsgpack try: from StringIO import StringIO as BytesIO except ImportError: from io import StringIO from io import BytesIO from PySide.QtCore import QByteArray, QIODevice, QBuffer from ghost import Ghost import logging from logger import getlogger logger = getlogger() appdir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) def main(url, output, option={}): result = { "error": [], "page": {}, "resources": [], "capture": None, } #savedir = appdir + "/artifacts/ghost/" + output #dump = savedir + "/ghost.pkl" savedir = os.path.join(appdir, "artifacts/ghost") dump = savedir + "/" + output