def __init__(self, FLAGS): self.FLAGS = FLAGS self.logger = get_logger(os.path.join(self.FLAGS.model_dir, "log.txt")) self.session = None self.saver = None self.overwrite_hyperparams()
from motion_python_api import take_snapshot from logger_utils import get_logger import yaml import shutil import os from time import sleep config = yaml.safe_load(open("config.yml")) logger = get_logger() def take_picture(job = 'test', num=0): ## NEED TO DO: # Check Vibration # Median Stacking # Start up motion server if it isn't running # Check to make sure photo is acceptable location = config['picture_directory'].format(job) take_snapshot() if not os.path.exists(location): os.makedirs(location) try: shutil.copy('/tmp/motion/lastsnap.jpg', location + '/{}_{}.jpg'.format(job, num)) logger.info('Took a picture') except FileNotFoundError: sleep(.2) try: shutil.copy('/tmp/motion/lastsnap.jpg', location + '/{}_{}.jpg'.format(job, num)) logger.info('Took a picture') except FileNotFoundError: logger.error('FAILED TO TAKE picture')
#!/usr/bin/env python3 # Uploader Server Program import logger_utils import ftplib import os import requests from yaml import safe_load from time import sleep from multiprocessing import Pool, Value from polling_server import polling_server config = safe_load(open("config.yml")) logger = logger_utils.get_logger() def upload_process(args): # Counter is a multiprocessing Value used to keep track of uploading progress global counter files = args[0] job = args[1] # print('I am an upload process!!') # print('my files are:{}'.format(files)) ip = config['remote_ip'] user = config['remote_user'] passwd = config['remote_passwd'] # print('Starting my ftp client') ftp = ftplib.FTP(ip) ftp.login(user, passwd) # print('ftp client started!!')
# -*- coding: utf-8 -*- import re from datetime import date from apps.common.models import BPAUniqueID, BPAProject import logger_utils BPA_ID = "102.100.100" INGEST_NOTE = "Ingested from GoogleDocs on {0}".format(date.today()) logger = logger_utils.get_logger(__name__) def ingest_bpa_ids(data, project_key, project_name): """ The BPA ID's are unique """ id_set = set() for e in data: if isinstance(e, dict): bpa_id = e['bpa_id'].strip() elif isinstance(e, tuple): if e.bpa_id is not None: bpa_id = e.bpa_id.strip() else: continue if BPAIdValidator(bpa_id).is_valid(): id_set.add(bpa_id)
import pickle import re from datetime import datetime, timedelta import time from logging import INFO, DEBUG from selenium import webdriver from selenium.webdriver.support.ui import Select from selenium.common.exceptions import NoSuchElementException from logger_utils import get_logger logger = get_logger('browser', INFO) chrome_options = webdriver.ChromeOptions() # chrome_options.add_argument('--proxy-server=socks5://3.12.34.63:7778') chrome_options.add_argument('--window-size=1600,700') allowed_ports = [ 'Donsak', 'Phangan', 'Samui', 'Tao', 'Chumpon', 'Chumphon', 'Surat Thani' ] # Пока не используется allowed_ports_lower = [p.lower() for p in allowed_ports] # Названия источников для парсинга sources = ['Raja', 'Lomprayah', 'Songserm', 'Seatran'] def chrome_options_no_gui(no_gui=True): if no_gui: chrome_options.add_argument('--no-sandbox') chrome_options.add_argument('--headless') chrome_options.add_argument('--disable-gpu')
@author: Gaivin Wang @license: Apache Licence @contact: [email protected] @site: @software: PyCharm @file: esutils.py @time: 5/13/2019 3:59 PM """ from csv import DictReader import datetime, os from elasticsearch import Elasticsearch from elasticsearch import helpers import re from logger_utils import get_logger logger = get_logger(logger_name="ESUtils") class ESUtils(): def __init__(self, hosts): self.es = Elasticsearch(hosts=hosts) def import_from_csv(self, csv_file, index_name, timestamp=None, filed_format=None, **addition_kwargs): if not os.path.exists(csv_file): logger.error("%s file not found" % csv_file) raise Exception("Cannot find the csv file %s" % csv_file) actions = [] if not self.es.indices.exists(index=index_name, allow_no_indices=True): logger.warn("Index is not found") self.es.indices.create(index=index_name, body={}, ignore=400) if timestamp is None: timestamp = datetime.datetime.now()
# # See the License for the specific language governing permissions and # limitations under the License. # # For those usages not covered by the Apache version 2.0 License please # contact with [email protected] __author__ = 'jfernandez' import uuid from pkg_resources import resource_string from logger_utils import get_logger from constants import TRANSACTION_ID_PATTERN, RESOURCES_SAMPLEDATA_MODULE, RESOURCES_PARAMETER_PATTERN logger = get_logger("utils") def generate_transaction_id(): """ Generate a transaction ID value following defined pattern. :return: New transactionId """ return TRANSACTION_ID_PATTERN.format(uuid=uuid.uuid4()) def get_probe_data_from_resource_file(filename, replacement_values=None): """ Get probe data from resource files. If replacement_values is not empty, :param filename: Resource filename to be used for loading probe data
#!/usr/bin/env python3 # Echo server program import socket import yaml import logger_utils as utils import json from time import sleep from sys import exit from flask import Flask, send_from_directory from flask_restful import reqparse, abort, Api, Resource import logging config = yaml.safe_load(open("config.yml")) logger = utils.get_logger() HOST = config['host'] PORTS = config['ports'] app = Flask(__name__) api = Api(app) parser = reqparse.RequestParser() for i in config['parser_arguments']: parser.add_argument(i) log = logging.getLogger('werkzeug') log.setLevel(logging.ERROR) ### THIS IS ALL TRASH ### Literally just a wrapper around Master. Should be done much better ### Ignore this file I'm going to try to replace it in the next few days. def talk_to_master(args):
# contact with [email protected] __author__ = 'jfernandez' import requests import xmltodict import xmldict from json import JSONEncoder from constants import HEADER_REPRESENTATION_JSON, HEADER_REPRESENTATION_XML, HTTP_VERB_POST, HTTP_VERB_DELETE, \ HTTP_VERB_GET, HTTP_VERB_PUT, HTTP_VERB_UPDATE from logger_utils import get_logger, log_print_request, log_print_response API_ROOT_URL_ARG_NAME = 'api_root_url' URL_ROOT_PATTERN = "{protocol}://{host}:{port}" logger = get_logger("rest_client_utils") class RestClient(object): api_root_url = None def __init__(self, protocol, host, port, resource=None): """ This method init the RestClient with an URL ROOT Pattern using the specified params :param protocol: Web protocol [HTTP | HTTPS] (string) :param host: Hostname or IP (string) :param port: Service port (string) :param resource: Base URI resource, if exists (string) :return: None """
# # See the License for the specific language governing permissions and # limitations under the License. # # For those usages not covered by the Apache version 2.0 License please # contact with [email protected] import requests import xmltodict import xmldict from json import JSONEncoder from logger_utils import get_logger, log_print_request, log_print_response requests.packages.urllib3.disable_warnings() logger = get_logger(__name__) # HEADERS HEADER_CONTENT_TYPE = u'content-type' HEADER_ACCEPT = u'accept' HEADER_REPRESENTATION_JSON = u'application/json' HEADER_REPRESENTATION_XML = u'application/xml' HEADER_REPRESENTATION_TEXTPLAIN = u'text/plain' HEADER_AUTH_TOKEN = u'X-Auth-Token' HEADER_TENANT_ID = u'Tenant-Id' HEADER_TRANSACTION_ID = u'txid' # HTTP VERBS HTTP_VERB_POST = 'post' HTTP_VERB_GET = 'get'
# contact with [email protected] __author__ = "Javier Fernández" __email__ = "*****@*****.**" __copyright__ = "Copyright 2015" __license__ = " Apache License, Version 2.0" __version__ = "1.0.0" from logger_utils import get_logger from fabric.api import env, hide, run, get from fabric.tasks import execute from fabric.contrib import files from StringIO import StringIO __logger__ = get_logger("qautils") FABRIC_ASSERT_RESULT = u'<local-only>' class FabricAssertions(): @staticmethod def assert_file_exist(path): """ Fabric assertion: Check if file exists on the current remote hosts. :param path (string): Absolute path to file :return (bool): True if given file exists on the current remote host (dir: PROVISION_ROOT_PATH). """
default=-1, help='Number of runs' ) # ========================================= args = parser.parse_args() DATA_SET = args.DATA_SET num_runs = args.num_runs num_jobs = args.num_jobs if num_jobs == -1: num_jobs = num_runs LOG_FILE = 'log_results_{}.txt'.format(DATA_SET) LOGGER = logger_utils.get_logger(LOG_FILE,'DAGMM') LOGGER.info(DATA_SET) config_file = 'config.yaml' with open(config_file, 'r') as fh: config = yaml.safe_load(fh) num_anomaly_sets = config[DATA_SET]['num_anomaly_sets'] anomaly_ratio = config[DATA_SET]['anomaly_ratio'] model_config = config[DATA_SET]['dagmm'] anom_perc = 100 * anomaly_ratio/(1+anomaly_ratio) print('Anomaly percentage ', anom_perc) K_values = [2,5] K_vs_f1 = []
parser.add_argument( '--objective', type=str, default = 'one-class', help='objective', choices=['one-class', 'soft-boundary'] ) # ========================================= args = parser.parse_args() DATA_SET = args.DATA_SET num_runs = args.num_runs LOG_FILE = 'log_results_{}.txt'.format(DATA_SET) LOGGER = logger_utils.get_logger(LOG_FILE,'deepSVDD') LOGGER.info(DATA_SET) config_file = 'config.yaml' anom_perc = args.anom_perc with open(config_file, 'r') as fh: config = yaml.safe_load(fh) num_anomaly_sets = config[DATA_SET]['num_anomaly_sets'] anomaly_ratio = config[DATA_SET]['anomaly_ratio'] anom_perc = 100 * anomaly_ratio/(1+anomaly_ratio) step = 0.025 nu_values = np.arange(0.025,0.2+step,step) nu_vs_auc = [] objective = args.objective
import re from datetime import datetime, timedelta from bs4 import BeautifulSoup import requests from logging import INFO, DEBUG from mygoogleapi import get_table, refresh_table from browser import start_parse_raja, start_parse_lomp, allowed_ports_lower, clean_data, sources from logger_utils import get_logger logger = get_logger('parser', INFO) # Вырезает таблицу для конкретного источника из полученной гугл таблицы def get_source_table(google_table, source): logger.debug('Вырезаем таблицу ' + source) headers = google_table[0] source_i = headers.index('source') pop_indexes = [] source_table = [] for i, row in enumerate(google_table): try: if row[source_i] == source: pop_indexes.append(i) source_table.append(row) except: logger.exception(row) pop_indexes.reverse() for i in pop_indexes: google_table.pop(i) return source_table
# ----- end iteration loop ----- if __name__ == '__main__': if not os.path.exists(config.log_dir): os.makedirs(config.log_dir) if not os.path.exists(config.model_path): os.makedirs(config.model_path) optimizer = tf.compat.v2.optimizers.Adam() # centralNet = DQSA(input_size=config.input_size_central, usernet=False) loss = tf.compat.v2.losses.mean_squared_error centralNet = DQSAVersion2(input_size=config.input_size_central, usernet=False, optimizer=optimizer, loss=loss) # centralNet.define_loss(loss=loss) # centralNet.define_optimizer(optimizer=optimizer) logger = get_logger(os.path.join(config.log_dir, "train_log")) Tensorcallback = callbacks.TensorBoard(config.log_dir, write_graph=True, write_images=False) Tensorcallback.set_model(centralNet.model) callbacks = {'tensorboard': Tensorcallback} DQSATarget = DQSAVersion2(input_size=config.input_size_central, usernet=False, optimizer=optimizer, loss=loss) # centralNet.load_weights(path=config.load_ckpt_path) # DQSATarget.load_weights(path=config.load_ckpt_path) trainDqsa(callbacks, logger, centralNet, DQSATarget)
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # For those usages not covered by the Apache version 2.0 License please # contact with [email protected] import requests import xmltodict import xmldict from json import JSONEncoder from logger_utils import get_logger, log_print_request, log_print_response requests.packages.urllib3.disable_warnings() logger = get_logger("restClientUtils") # HEADERS HEADER_CONTENT_TYPE = u'content-type' HEADER_ACCEPT = u'accept' HEADER_REPRESENTATION_JSON = u'application/json' HEADER_REPRESENTATION_XML = u'application/xml' HEADER_REPRESENTATION_TEXTPLAIN = u'text/plain' HEADER_AUTH_TOKEN = u'X-Auth-Token' HEADER_TENANT_ID = u'Tenant-Id' HEADER_TRANSACTION_ID = u'txid' # HTTP VERBS HTTP_VERB_POST = 'post' HTTP_VERB_GET = 'get' HTTP_VERB_PUT = 'put'
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # For those usages not covered by the Apache version 2.0 License please # contact with [email protected] import requests import xmltodict import xmldict from json import JSONEncoder from logger_utils import get_logger, log_print_request, log_print_response requests.packages.urllib3.disable_warnings() logger = get_logger(__name__) # HEADERS HEADER_CONTENT_TYPE = u'content-type' HEADER_ACCEPT = u'accept' HEADER_REPRESENTATION_JSON = u'application/json' HEADER_REPRESENTATION_XML = u'application/xml' HEADER_REPRESENTATION_TEXTPLAIN = u'text/plain' HEADER_AUTH_TOKEN = u'X-Auth-Token' HEADER_TENANT_ID = u'Tenant-Id' HEADER_TRANSACTION_ID = u'txid' # HTTP VERBS HTTP_VERB_POST = 'post' HTTP_VERB_GET = 'get' HTTP_VERB_PUT = 'put'
default='kddcup', choices=['kddcup', 'kddcup_neptune', 'nsl_kdd', 'nb15', 'gureKDD']) parser.add_argument('--anom_perc', type=int, help='Percentage of anomalies', default=None) parser.add_argument('--num_runs', type=int, default=1, help='Number of runs') # ========================================= args = parser.parse_args() DATA_SET = args.DATA_SET num_runs = args.num_runs LOG_FILE = 'log_results_{}.txt'.format(DATA_SET) LOGGER = logger_utils.get_logger(LOG_FILE, 'OCSVM') anom_perc = args.anom_perc LOGGER.info(DATA_SET) config_file = 'config.yaml' with open(config_file, 'r') as fh: config = yaml.safe_load(fh) num_anomaly_sets = config[DATA_SET]['num_anomaly_sets'] anomaly_ratio = config[DATA_SET]['anomaly_ratio'] if anom_perc is None: anom_perc = 100 * anomaly_ratio / (1 + anomaly_ratio) LOGGER.info(' Setting anomaly percentage to {} %'.format(anom_perc)) nu_values = np.arange(0.1, 0.5 + 0.1, 0.10) nu_vs_auc = [] for nu in nu_values:
parser.add_argument("--xlsx", type=bool, default=False, help="Output XLSX file of the statistic results") parser.add_argument("--logging_level", type=int, default="20", help="Logging level") parser.add_argument("--logging_file", type=str, default="log.txt", help="Logging file") args = parser.parse_args() logger = logger_utils.get_logger(args) def read_traces(traces_path): with open(traces_path, 'r') as fp: _traces = json.load(fp) if isinstance(_traces, dict): traces = _traces.get("traceEvents") elif isinstance(_traces, list): traces = _traces else: raise ValueError( "The output file not follow the stardard chrome tracing format!: " + traces_path) return traces
parser.add_argument( '--DATA_SET', type=str, help=' Which data set ?', default='kddcup', choices=['kddcup', 'kddcup_neptune', 'nsl_kdd', 'nb15', 'gureKDD']) parser.add_argument('--num_runs', type=int, default=10, help='Number of runs') # ========================================= args = parser.parse_args() DATA_SET = args.DATA_SET num_runs = args.num_runs LOG_FILE = 'log_results_{}.txt'.format(DATA_SET) LOGGER = logger_utils.get_logger(LOG_FILE, 'DCN') LOGGER.info(DATA_SET) config_file = 'config.yaml' with open(config_file, 'r') as fh: config = yaml.safe_load(fh) num_anomaly_sets = config[DATA_SET]['num_anomaly_sets'] anomaly_ratio = config[DATA_SET]['anomaly_ratio'] model_config = config[DATA_SET]['dcn'] anom_perc = 100 * anomaly_ratio / (1 + anomaly_ratio) step = 1 K_values = np.arange(5, 10 + step, step) K_vs_auc = [] for K in K_values:
# encoding: utf-8 """ @version: v1.0 @author: Gaivin Wang @license: Apache Licence @contact: [email protected] @site: https://github.com/gaivin/ @software: PyCharm @file: ssh_utils.py @time: 6/8/2018 3:43 PM """ import paramiko from logger_utils import get_logger logger = get_logger("SSH_Utils") class SSHConnection(object): def __init__(self, host='192.168.2.103', port=22, username='******', password='******'): self.host = host self.port = port self.username = username self.password = password self._transport = None self._ssh_client = None def connect(self): transport = paramiko.Transport((self.host, self.port)) try: transport.connect(username=self.username, password=self.password)
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # For those usages not covered by the Apache version 2.0 License please # contact with [email protected] __author__ = 'jfernandez' import uuid from pkg_resources import resource_string from logger_utils import get_logger from constants import CORRELATOR_PATTERN, RESOURCES_SAMPLEDATA_MODULE, RESOURCES_PARAMETER_PATTERN logger = get_logger("utils") def generate_correlator(): """ Generate a correlator value following defined pattern. :return: New correlator """ return CORRELATOR_PATTERN.format(uuid=uuid.uuid4()) def get_probe_data_from_resource_file(filename, replacement_values=None): """ Get probe data from resource files. If replacement_values is not empty, :param filename: Resource filename to be used for loading probe data
# # See the License for the specific language governing permissions and # limitations under the License. # # For those usages not covered by the Apache version 2.0 License please # contact with [email protected] import requests import xmltodict import xmldict from json import JSONEncoder from logger_utils import get_logger, log_print_request, log_print_response requests.packages.urllib3.disable_warnings() logger = get_logger("restClientUtils") # HEADERS HEADER_CONTENT_TYPE = u'content-type' HEADER_ACCEPT = u'accept' HEADER_REPRESENTATION_JSON = u'application/json' HEADER_REPRESENTATION_XML = u'application/xml' HEADER_REPRESENTATION_TEXTPLAIN = u'text/plain' HEADER_AUTH_TOKEN = u'X-Auth-Token' HEADER_TENANT_ID = u'Tenant-Id' HEADER_TRANSACTION_ID = u'txid' # HTTP VERBS HTTP_VERB_POST = 'post' HTTP_VERB_GET = 'get'
text="Users", font=dict( family="Courier New, monospace", size=18, color="#7f7f7f" ) ) ) ) fig.show() if __name__ == '__main__': userNet = DQSAVersion2(input_size=config.input_size_user, usernet=True) userNet.load_weights(path="/home/dorliv/Desktop/DQSAKeras/successful_experiements/three_users/network_central_best_three_users/checkpoint") logger = get_logger(os.path.join(config.evaluate_log_dir, "evaluate_log")) Tensorcallback = callbacks.TensorBoard(config.evaluate_log_dir, write_graph=True, write_images=False) Tensorcallback.set_model(userNet.model) env = OneTimeStepEnv() beta = 10 alpha = 0 # e_greedy draw_heatmap_flag = False channelThroughPutPerTstep = initCTP(config.TimeSlotsEvaluate) # init the data structure to view the mean reward at each t for iteration in range(5): channelThroughPutMean = 0 loss_value = [] collisonsMean = 0 idle_timesMean = 0 for episode in range(config.Episodes): heatmap = []
#!/usr/bin/env python # encoding: utf-8 import subprocess import datetime import os import logger_utils import fire from random import randint, sample from lvm2py import LVM logger = logger_utils.get_logger("volume_utils") volume_fill_logger = logger_utils.get_logger(logger_name="volume_fill_history") def create_volume(volume_size, mount_point=None, fs_type="ext3", vg="fsa", volume_name=None): if volume_name is None: volume_name = "%s-%s" % (volume_size, fs_type) if mount_point is None: mount_point = "/lvm/%s-%s" % (vg, volume_name) if is_mount_point_available(mount_point): logger.info("Mount point %s is exist. Please remove it first." % mount_point) return mount_point volume_path = get_lv_path(lv_name=volume_name, vg_name=vg) if not volume_path: volume_path = create_lv(volume_name=volume_name,
def lra_framework(model: Model, lra_algorithm, x_train, x_test, y_test, dataset, model_name): scores = [] arch = model_name.split('_')[0] dir = os.path.join(arch, model_name) if not os.path.exists(dir): os.makedirs(dir) logger_path = os.path.join(dir, 'log_file_model_{}'.format(model_name)) if os.path.exists(logger_path + ".log"): os.remove(logger_path + ".log") logger = get_logger(logger_path) samples = x_train # np.concatennum_of_paramsate((x_train, x_test)) initial_score = model.evaluate(x_test, y_test, verbose=0) score = np.copy(initial_score) score_to_plot = [] compression_ratio_to_plot = [] score_to_plot.append(score[-1]) compression_ratio_to_plot.append(0) opt = tf.keras.optimizers.Adam() temp_model = clone_model(model) temp_model.compile( loss=tf.keras.losses.categorical_crossentropy, optimizer=opt, metrics=['accuracy']) lra_model = clone_model(model) lra_model.set_weights(model.get_weights()) lra_model.compile( loss=tf.keras.losses.categorical_crossentropy, optimizer=opt, metrics=['accuracy']) relevant_layers, relevant_layers_index_in_model = get_relevant_layers(model) initial_num_of_params = get_initial_number_of_params(relevant_layers) print('\n\n') it = 0 while (initial_score[1] - score[1] < cfg.accuracy_tolerance): klds = [] print("Start of Iteration {0}:".format(it)) logger.info("Start of Iteration {0}:".format(it)) curr_num_of_params = 0 for i, layer_index in enumerate(relevant_layers_index_in_model): temp_model.set_weights(lra_model.get_weights()) temp_model, _, _, num_of_params_layer_i = lra_per_layer(temp_model, layer_index=layer_index, algorithm=lra_algorithm, update_memory=False) curr_num_of_params += num_of_params_layer_i # kld_per_layer = evaluate_kld_for_each_layer(model, temp_model, samples) kld_per_layer = evaluate_kld_for_last_layer(model, temp_model, samples) print('{} ({}): KLD per layer {:.4f}'.format(relevant_layers[i].name, layer_index, kld_per_layer)) # klds.append(sum(kld_per_layer)) klds.append(kld_per_layer) print("Compression ratio : {}. \n number of params: \n \t lra_model {:,} \n \t initial model {:,}" .format(1 - curr_num_of_params / initial_num_of_params, curr_num_of_params, initial_num_of_params)) logger.info("Compression ratio : {}. number of params: \t lra_model {:,} \t initial model {:,}" .format(1 - curr_num_of_params / initial_num_of_params, curr_num_of_params, initial_num_of_params)) if curr_num_of_params < initial_num_of_params: score_to_plot.append(score[-1]) compression_ratio_to_plot.append(1 - curr_num_of_params / initial_num_of_params) # so the graph will start from 0 and go to 1 min_kld_index = np.argmin(klds) layer_with_min_kld = relevant_layers[min_kld_index] layer_index_in_model_with_min_kld = relevant_layers_index_in_model[min_kld_index] # print('---------------- Start Compression with {0} for layer {1}!) ----------------'.format(lra_algorithm, # layer_with_min_kld.name)) lra_model, truncated, full_svs, _ = lra_per_layer(lra_model, layer_index=layer_index_in_model_with_min_kld, algorithm=lra_algorithm, update_memory=True) if 'tsvd' in lra_algorithm: print('Approximate {0} {1} using {2}/{3} singular values'.format(layer_with_min_kld.name, layer_index_in_model_with_min_kld, truncated, full_svs)) logger.info('Approximate {0} {1} using {2}/{3} singular values'.format(layer_with_min_kld.name, layer_index_in_model_with_min_kld, truncated, full_svs)) if 'rrqr' in lra_algorithm: print('Approximate {0} {1} using {2}/{3} rank ratio '.format(layer_with_min_kld.name, layer_index_in_model_with_min_kld, truncated, full_svs)) logger.info('Approximate {0} {1} using {2}/{3} rank ratio'.format(layer_with_min_kld.name, layer_index_in_model_with_min_kld, truncated, full_svs)) # print('---------------- Done Compression with {0} for layer {1}!) ----------------'.format(lra_algorithm, # layer_with_min_kld.name)) score = lra_model.evaluate(x_test, y_test, verbose=0) scores.append(score) print("End of Iteration {}:\ntest loss = {:.3f}\ntest accuracy = {:.3f}\n\n\n".format(it, score[0], score[1])) logger.info("End of Iteration {}:\ntest loss = {:.3f}\ntest accuracy = {:.3f}\n\n\n".format(it, score[0], score[1])) it += 1 save_model_path = os.path.join(dir, '{0}_{1}_lra.h5'.format(model_name, dataset)) print('Saving model to: ', save_model_path) logger.info('Saving model to: {}'.format(save_model_path)) save_model(lra_model, save_model_path, include_optimizer=False, save_format='h5') score_to_plot = np.asarray(score_to_plot) compression_ratio_to_plot = np.asarray(compression_ratio_to_plot) np.save(os.path.join(dir, 'score_{}'.format(model_name)), score_to_plot) np.save(os.path.join(dir, 'compression_{}'.format(model_name)), compression_ratio_to_plot) plot_score_versus_compression(save_dir=dir, score_data=score_to_plot, compression_data=compression_ratio_to_plot, model_name=model_name, algo=lra_algorithm)
@author: Gaivin Wang @license: Apache Licence @contact: [email protected] @site: https://github.com/gaivin/ @software: PyCharm @file: pyrobot.py @time: 5/13/2019 10:00 AM """ import subprocess import os import fire import sys from logger_utils import get_logger logger = get_logger("pyrobot") def robot(test, include=None, exclude=None, variable=None, debug=None, rerun_failed=False, robot_executor="pybot", rebot_executor="rebot", **robot_kwargs): output = "output.xml" outputdir = os.path.abspath(os.path.curdir) cmd = robot_executor if exclude: cmd += _generate_options(option_type="exclude", values=exclude) if variable: cmd += _generate_options(option_type="variable", values=variable) if include: cmd += _generate_options(option_type="include", values=include) if debug: cmd += _generate_options(option_type="debug", values=debug)
# encoding: utf-8 import logger_utils import fire import volume_utils import config logger = logger_utils.get_logger("backup_excutor") def create_volumes(volumes, fs="ext3"): for mount_point, size in volumes.items(): volume_utils.create_volume(volume_size=size, mount_point=mount_point, fs_type=fs) return True def fill(targets=config.VOLUMES_FILL_TARGET): for volume, target in targets.items(): logger.info("Start Fill %s to %s..." % (volume, target)) volume_utils.fill_volume(volume=volume, percentage=target) logger.info("Completed Fill %s to %s." % (volume, target)) volume_utils.execute("df -h") def create(): do = raw_input('You are creating new volumes via your configuration. Are you sure this operation:(yes/[no]) ') if do == "yes": create_volumes(volumes=config.EXT3_VOLUMES, fs="ext3") create_volumes(volumes=config.EXT4_VOLUMES, fs="ext4") logger.info("Volumes creation completed.") lvs = volume_utils.list_lv()
__author__ = 'jfernandez' import requests import xmltodict import xmldict from json import JSONEncoder from constants import HEADER_REPRESENTATION_JSON, HEADER_REPRESENTATION_XML, HTTP_VERB_POST, HTTP_VERB_DELETE, \ HTTP_VERB_GET, HTTP_VERB_PUT, HTTP_VERB_UPDATE from logger_utils import get_logger, log_print_request, log_print_response API_ROOT_URL_ARG_NAME = 'api_root_url' URL_ROOT_PATTERN = "{protocol}://{host}:{port}" logger = get_logger("rest_client_utils") class RestClient(object): api_root_url = None def __init__(self, protocol, host, port, resource=None): """ This method init the RestClient with an URL ROOT Pattern using the specified params :param protocol: Web protocol [HTTP | HTTPS] (string) :param host: Hostname or IP (string) :param port: Service port (string) :param resource: Base URI resource, if exists (string) :return: None """
__author__ = 'jfernandez' from lettuce import world from logger_utils import get_logger import os import sys import json from remote_tail_utils import RemoteTail from constants import PROPERTIES_FILE, PROPERTIES_CONFIG_ENV, PROPERTIES_CONFIG_ENV_LOGS_PATH, \ PROPERTIES_CONFIG_ENV_LOCAL_PATH_REMOTE_LOGS, MONITORING_CONFIG_SERVICE_PRIVATEKEY, \ MONITORING_CONFIG_SERVICE_LOG_PATH, MONITORING_CONFIG_SERVICE_HOST, MONITORING_CONFIG_SERVICE_HOSTUSER, \ MONITORING_CONFIG_SERVICE_ADAPTER, MONITORING_CONFIG_SERVICE_LOG_FILE_NAME logger = get_logger("terrain_utils") def _load_project_properties(): """ Parse the JSON configuration file located in the src folder and store the resulting dictionary in the lettuce world global variable. """ logger.debug("Loading test properties") with open(PROPERTIES_FILE) as config_file: try: world.config = json.load(config_file) except Exception, e: logger.error('Error parsing config file: %s' % e) sys.exit(1)
# limitations under the License. # # For those usages not covered by the Apache version 2.0 License please # contact with [email protected] __author__ = 'jfernandez' from paramiko.ssh_exception import SSHException from sshtail import SSHTailer, load_dss_key, load_rsa_key from logger_utils import get_logger import time import threading logger = get_logger("remote_tail_utils") # Delay period just after starting remote tailers TIMER_DELAY_PERIOD = 3 # Grace period when stopping thread. 3 seconds by default TIMER_GRACE_PERIOD = 3 # Global flag _tail_terminate_flag = False class RemoteTail: def __init__(self, remote_host_ip, remote_host_user, remote_log_path, remote_log_file_name, local_log_target, private_key):
# See the License for the specific language governing permissions and # limitations under the License. # # For those usages not covered by the Apache version 2.0 License please # contact with [email protected] __author__ = 'jfernandez' from sshtail import SSHTailer, load_dss_key import time import threading from logger_utils import get_logger logger = get_logger("remote_tail_utils") # Delay period just after starting remote tailers TIMER_DELAY_PERIOD = 3 # Grace period when stopping thread. 3 seconds by default TIMER_GRACE_PERIOD = 3 # Global flag _tail_terminate_flag = False class RemoteTail: def __init__(self, remote_host_ip, remote_host_user, remote_log_path, remote_log_file_name, local_log_target, private_key):