import logictensornetworks as ltn ltn.set_universal_aggreg("min") ltn.set_existential_aggregator("max") ltn.set_tnorm("prod") ltn.LAYERS = 4 from logictensornetworks import And, Not, Or, Forall, Exists, Implies, Equiv import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def show_result(): x0 = data[:, 0] x1 = data[:, 1] prC = sess.run([C[i](x) for i in clst_ids]) n = 2 m = (nr_of_clusters + 1) // n + 1 fig = plt.figure(figsize=(3 * 3, m * 3)) fig.add_subplot(m, n, 1) plt.title("groundtruth") for \ i in clst_ids: plt.scatter(cluster[i][:, 0], cluster[i][:, 1]) for i in clst_ids: fig.add_subplot(m, n, i + 2) plt.title("C" + str(i) + "(x)") plt.scatter(x0, x1, c=prC[i].T[0]) plt.scatter(x0[:2], x1[:2], s=0, c=[0, 1])
def set_tnorm(tnorm): ltn.set_tnorm(tnorm)
def set_tnorm(tnorm): CONFIGURATION['tnorm'] = tnorm ltn.set_tnorm(tnorm)