예제 #1
0
def main():
    logmgr = LogManager("mylog.dat", "w")  # , comm=...

    # set a run property
    logmgr.set_constant("myconst", uniform(0, 1))

    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)

    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)
    logmgr.add_quantity(Fifteen("fifteen"))
    logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

    for istep in range(200):
        logmgr.tick_before()

        dt = uniform(0.01, 0.1)
        set_dt(logmgr, dt)
        sleep(dt)

        # Illustrate custom timers
        if istep % 10 == 0:
            with vis_timer.start_sub_timer():
                sleep(0.05)

        # Illustrate warnings capture
        if uniform(0, 1) < 0.05:
            warn("Oof. Something went awry.")

        logmgr.tick_after()

    logmgr.close()
예제 #2
0
def initialize_logmgr(enable_logmgr: bool,
                      filename: str = None,
                      mode: str = "wu",
                      mpi_comm=None) -> LogManager:
    """Create and initialize a mirgecom-specific :class:`logpyle.LogManager`."""
    if not enable_logmgr:
        return None

    logmgr = LogManager(filename=filename, mode=mode, mpi_comm=mpi_comm)

    add_run_info(logmgr)
    add_package_versions(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)

    try:
        logmgr.add_quantity(PythonMemoryUsage())
    except ImportError:
        from warnings import warn
        warn("psutil module not found, not tracking memory consumption."
             "Install it with 'pip install psutil'")

    return logmgr
예제 #3
0
def main(write_output=True, flux_type_arg="upwind"):
    from grudge.tools import mem_checkpoint
    from math import sin, cos, pi, sqrt
    from math import floor

    from grudge.backends import guess_run_context
    rcon = guess_run_context()

    def f(x):
        return sin(pi*x)

    def u_analytic(x, el, t):
        return f((-numpy.dot(v, x)/norm_v+t*norm_v))

    def boundary_tagger(vertices, el, face_nr, all_v):
        if numpy.dot(el.face_normals[face_nr], v) < 0:
            return ["inflow"]
        else:
            return ["outflow"]

    dim = 2

    if dim == 1:
        v = numpy.array([1])
        if rcon.is_head_rank:
            from grudge.mesh.generator import make_uniform_1d_mesh
            mesh = make_uniform_1d_mesh(0, 2, 10, periodic=True)
    elif dim == 2:
        v = numpy.array([2,0])
        if rcon.is_head_rank:
            from grudge.mesh.generator import make_disk_mesh
            mesh = make_disk_mesh(boundary_tagger=boundary_tagger)
    elif dim == 3:
        v = numpy.array([0,0,1])
        if rcon.is_head_rank:
            from grudge.mesh.generator import make_cylinder_mesh, make_ball_mesh, make_box_mesh

            mesh = make_cylinder_mesh(max_volume=0.04, height=2, boundary_tagger=boundary_tagger,
                    periodic=False, radial_subdivisions=32)
    else:
        raise RuntimeError("bad number of dimensions")

    norm_v = la.norm(v)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    if dim != 1:
        mesh_data = mesh_data.reordered_by("cuthill")

    discr = rcon.make_discretization(mesh_data, order=4)
    vis_discr = discr

    from grudge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(vis_discr, rcon, "fld")

    # operator setup ----------------------------------------------------------
    from grudge.data import \
            ConstantGivenFunction, \
            TimeConstantGivenFunction, \
            TimeDependentGivenFunction
    from grudge.models.advection import StrongAdvectionOperator, WeakAdvectionOperator
    op = WeakAdvectionOperator(v,
            inflow_u=TimeDependentGivenFunction(u_analytic),
            flux_type=flux_type_arg)

    u = discr.interpolate_volume_function(lambda x, el: u_analytic(x, el, 0))

    # timestep setup ----------------------------------------------------------
    from grudge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()

    if rcon.is_head_rank:
        print("%d elements" % len(discr.mesh.elements))

    # diagnostics setup -------------------------------------------------------
    from logpyle import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "advection.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    stepper.add_instrumentation(logmgr)

    from grudge.log import Integral, LpNorm
    u_getter = lambda: u
    logmgr.add_quantity(Integral(u_getter, discr, name="int_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, p=1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)

    try:
        from grudge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=3, logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(discr,
                    stepper=stepper, t=t, fields=u))

        for step, t, dt in step_it:
            if step % 5 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)
                vis.add_data(visf, [
                    ("u", discr.convert_volume(u, kind="numpy")),
                    ], time=t, step=step)
                visf.close()

            u = stepper(u, t, dt, rhs)

        true_u = discr.interpolate_volume_function(lambda x, el: u_analytic(x, el, t))
        print(discr.norm(u-true_u))
        assert discr.norm(u-true_u) < 1e-2
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
예제 #4
0
def simple_wave_entrypoint(dim=2, num_elems=256, order=4, num_steps=30,
                           log_filename="grudge.dat"):
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    num_parts = comm.Get_size()
    n = int(num_elems ** (1./dim))

    from meshmode.distributed import MPIMeshDistributor
    mesh_dist = MPIMeshDistributor(comm)

    if mesh_dist.is_mananger_rank():
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(a=(-0.5,)*dim,
                                          b=(0.5,)*dim,
                                          n=(n,)*dim)

        from pymetis import part_graph
        _, p = part_graph(num_parts,
                          xadj=mesh.nodal_adjacency.neighbors_starts.tolist(),
                          adjncy=mesh.nodal_adjacency.neighbors.tolist())
        part_per_element = np.array(p)

        local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts)
    else:
        local_mesh = mesh_dist.receive_mesh_part()

    vol_discr = DGDiscretizationWithBoundaries(cl_ctx, local_mesh, order=order,
                                               mpi_communicator=comm)

    source_center = np.array([0.1, 0.22, 0.33])[:local_mesh.dim]
    source_width = 0.05
    source_omega = 3

    sym_x = sym.nodes(local_mesh.dim)
    sym_source_center_dist = sym_x - source_center
    sym_t = sym.ScalarVariable("t")

    from grudge.models.wave import StrongWaveOperator
    from meshmode.mesh import BTAG_ALL, BTAG_NONE
    op = StrongWaveOperator(-0.1, vol_discr.dim,
            source_f=(
                sym.sin(source_omega*sym_t)
                * sym.exp(
                    -np.dot(sym_source_center_dist, sym_source_center_dist)
                    / source_width**2)),
            dirichlet_tag=BTAG_NONE,
            neumann_tag=BTAG_NONE,
            radiation_tag=BTAG_ALL,
            flux_type="upwind")

    from pytools.obj_array import join_fields
    fields = join_fields(vol_discr.zeros(queue),
            [vol_discr.zeros(queue) for i in range(vol_discr.dim)])

    from logpyle import LogManager, \
            add_general_quantities, \
            add_run_info, \
            IntervalTimer, EventCounter
    # NOTE: LogManager hangs when using a file on a shared directory.
    logmgr = LogManager(log_filename, "w", comm)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    log_quantities =\
        {"rank_data_swap_timer": IntervalTimer("rank_data_swap_timer",
                        "Time spent evaluating RankDataSwapAssign"),
        "rank_data_swap_counter": EventCounter("rank_data_swap_counter",
                        "Number of RankDataSwapAssign instructions evaluated"),
        "exec_timer": IntervalTimer("exec_timer",
                        "Total time spent executing instructions"),
        "insn_eval_timer": IntervalTimer("insn_eval_timer",
                        "Time spend evaluating instructions"),
        "future_eval_timer": IntervalTimer("future_eval_timer",
                        "Time spent evaluating futures"),
        "busy_wait_timer": IntervalTimer("busy_wait_timer",
                        "Time wasted doing busy wait")}
    for quantity in log_quantities.values():
        logmgr.add_quantity(quantity)

    bound_op = bind(vol_discr, op.sym_operator())

    def rhs(t, w):
        val, rhs.profile_data = bound_op(queue, profile_data=rhs.profile_data,
                                                log_quantities=log_quantities,
                                                t=t, w=w)
        return val
    rhs.profile_data = {}

    dt = 0.04
    dt_stepper = set_up_rk4("w", dt, fields, rhs)

    logmgr.tick_before()
    for event in dt_stepper.run(t_end=dt * num_steps):
        if isinstance(event, dt_stepper.StateComputed):
            logmgr.tick_after()
            logmgr.tick_before()
    logmgr.tick_after()

    def print_profile_data(data):
        print("""execute() for rank %d:
            \tInstruction Evaluation: %f%%
            \tFuture Evaluation: %f%%
            \tBusy Wait: %f%%
            \tTotal: %f seconds""" %
            (comm.Get_rank(),
             data['insn_eval_time'] / data['total_time'] * 100,
             data['future_eval_time'] / data['total_time'] * 100,
             data['busy_wait_time'] / data['total_time'] * 100,
             data['total_time']))

    print_profile_data(rhs.profile_data)
    logmgr.close()
def mpi_communication_entrypoint():
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue)

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    i_local_rank = comm.Get_rank()
    num_parts = comm.Get_size()

    from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis
    mesh_dist = MPIMeshDistributor(comm)

    dim = 2
    dt = 0.04
    order = 4

    if mesh_dist.is_mananger_rank():
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(a=(-0.5, ) * dim,
                                          b=(0.5, ) * dim,
                                          nelements_per_axis=(16, ) * dim)

        part_per_element = get_partition_by_pymetis(mesh, num_parts)

        local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element,
                                               num_parts)
    else:
        local_mesh = mesh_dist.receive_mesh_part()

    vol_discr = DiscretizationCollection(actx,
                                         local_mesh,
                                         order=order,
                                         mpi_communicator=comm)

    source_center = np.array([0.1, 0.22, 0.33])[:local_mesh.dim]
    source_width = 0.05
    source_omega = 3

    sym_x = sym.nodes(local_mesh.dim)
    sym_source_center_dist = sym_x - source_center
    sym_t = sym.ScalarVariable("t")

    from grudge.models.wave import WeakWaveOperator
    from meshmode.mesh import BTAG_ALL, BTAG_NONE
    op = WeakWaveOperator(
        0.1,
        vol_discr.dim,
        source_f=(
            sym.sin(source_omega * sym_t) *
            sym.exp(-np.dot(sym_source_center_dist, sym_source_center_dist) /
                    source_width**2)),
        dirichlet_tag=BTAG_NONE,
        neumann_tag=BTAG_NONE,
        radiation_tag=BTAG_ALL,
        flux_type="upwind")

    from pytools.obj_array import flat_obj_array
    fields = flat_obj_array(
        vol_discr.zeros(actx),
        [vol_discr.zeros(actx) for i in range(vol_discr.dim)])

    # FIXME
    # dt = op.estimate_rk4_timestep(vol_discr, fields=fields)

    # FIXME: Should meshmode consider BTAG_PARTITION to be a boundary?
    #           Fails because: "found faces without boundary conditions"
    # op.check_bc_coverage(local_mesh)

    from logpyle import LogManager, \
            add_general_quantities, \
            add_run_info, \
            IntervalTimer, EventCounter
    log_filename = None
    # NOTE: LogManager hangs when using a file on a shared directory.
    # log_filename = "grudge_log.dat"
    logmgr = LogManager(log_filename, "w", comm)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    log_quantities =\
        {"rank_data_swap_timer": IntervalTimer("rank_data_swap_timer",
        "Time spent evaluating RankDataSwapAssign"),
        "rank_data_swap_counter": EventCounter("rank_data_swap_counter",
        "Number of RankDataSwapAssign instructions evaluated"),
        "exec_timer": IntervalTimer("exec_timer",
        "Total time spent executing instructions"),
        "insn_eval_timer": IntervalTimer("insn_eval_timer",
        "Time spend evaluating instructions"),
        "future_eval_timer": IntervalTimer("future_eval_timer",
        "Time spent evaluating futures"),
        "busy_wait_timer": IntervalTimer("busy_wait_timer",
        "Time wasted doing busy wait")}
    for quantity in log_quantities.values():
        logmgr.add_quantity(quantity)

    logger.debug("\n%s", sym.pretty(op.sym_operator()))
    bound_op = bind(vol_discr, op.sym_operator())

    def rhs(t, w):
        val, rhs.profile_data = bound_op(profile_data=rhs.profile_data,
                                         log_quantities=log_quantities,
                                         t=t,
                                         w=w)
        return val

    rhs.profile_data = {}

    dt_stepper = set_up_rk4("w", dt, fields, rhs)

    final_t = 4
    nsteps = int(final_t / dt)
    logger.info("[%04d] dt %.5e nsteps %4d", i_local_rank, dt, nsteps)

    # from grudge.shortcuts import make_visualizer
    # vis = make_visualizer(vol_discr, vis_order=order)

    step = 0

    norm = bind(vol_discr, sym.norm(2, sym.var("u")))

    from time import time
    t_last_step = time()

    logmgr.tick_before()
    for event in dt_stepper.run(t_end=final_t):
        if isinstance(event, dt_stepper.StateComputed):
            assert event.component_id == "w"

            step += 1
            logger.debug("[%04d] t = %.5e |u| = %.5e ellapsed %.5e", step,
                         event.t, norm(u=event.state_component[0]),
                         time() - t_last_step)

            # if step % 10 == 0:
            #     vis.write_vtk_file("rank%d-fld-%04d.vtu" % (i_local_rank, step),
            #                        [("u", event.state_component[0]),
            #                         ("v", event.state_component[1:])])
            t_last_step = time()
            logmgr.tick_after()
            logmgr.tick_before()
    logmgr.tick_after()

    def print_profile_data(data):
        logger.info(
            """execute() for rank %d:\n
            \tInstruction Evaluation: %g\n
            \tFuture Evaluation: %g\n
            \tBusy Wait: %g\n
            \tTotal: %g seconds""", i_local_rank,
            data["insn_eval_time"] / data["total_time"] * 100,
            data["future_eval_time"] / data["total_time"] * 100,
            data["busy_wait_time"] / data["total_time"] * 100,
            data["total_time"])

    print_profile_data(rhs.profile_data)
    logmgr.close()
    logger.info("Rank %d exiting", i_local_rank)
예제 #6
0
def mpi_communication_entrypoint():
    cl_ctx = cl.create_some_context()
    queue = cl.CommandQueue(cl_ctx)
    actx = PyOpenCLArrayContext(queue, force_device_scalars=True)

    from mpi4py import MPI
    comm = MPI.COMM_WORLD
    i_local_rank = comm.Get_rank()
    num_parts = comm.Get_size()

    from meshmode.distributed import MPIMeshDistributor, get_partition_by_pymetis
    mesh_dist = MPIMeshDistributor(comm)

    dim = 2
    order = 4

    if mesh_dist.is_mananger_rank():
        from meshmode.mesh.generation import generate_regular_rect_mesh
        mesh = generate_regular_rect_mesh(a=(-0.5,)*dim,
                                          b=(0.5,)*dim,
                                          nelements_per_axis=(16,)*dim)

        part_per_element = get_partition_by_pymetis(mesh, num_parts)

        local_mesh = mesh_dist.send_mesh_parts(mesh, part_per_element, num_parts)

        del mesh
    else:
        local_mesh = mesh_dist.receive_mesh_part()

    dcoll = DiscretizationCollection(actx, local_mesh, order=order,
                                     mpi_communicator=comm)

    def source_f(actx, dcoll, t=0):
        source_center = np.array([0.1, 0.22, 0.33])[:dcoll.dim]
        source_width = 0.05
        source_omega = 3
        nodes = thaw(dcoll.nodes(), actx)
        source_center_dist = flat_obj_array(
            [nodes[i] - source_center[i] for i in range(dcoll.dim)]
        )
        return (
            np.sin(source_omega*t)
            * actx.np.exp(
                -np.dot(source_center_dist, source_center_dist)
                / source_width**2
            )
        )

    from grudge.models.wave import WeakWaveOperator
    from meshmode.mesh import BTAG_ALL, BTAG_NONE

    wave_op = WeakWaveOperator(
        dcoll,
        0.1,
        source_f=source_f,
        dirichlet_tag=BTAG_NONE,
        neumann_tag=BTAG_NONE,
        radiation_tag=BTAG_ALL,
        flux_type="upwind"
    )

    fields = flat_obj_array(
        dcoll.zeros(actx),
        [dcoll.zeros(actx) for i in range(dcoll.dim)]
    )

    dt = actx.to_numpy(
        2/3 * wave_op.estimate_rk4_timestep(actx, dcoll, fields=fields))

    wave_op.check_bc_coverage(local_mesh)

    from logpyle import LogManager, \
            add_general_quantities, \
            add_run_info
    log_filename = None
    # NOTE: LogManager hangs when using a file on a shared directory.
    # log_filename = "grudge_log.dat"
    logmgr = LogManager(log_filename, "w", comm)
    add_run_info(logmgr)
    add_general_quantities(logmgr)

    def rhs(t, w):
        return wave_op.operator(t, w)

    dt_stepper = set_up_rk4("w", dt, fields, rhs)

    final_t = 4
    nsteps = int(final_t/dt)
    logger.info("[%04d] dt %.5e nsteps %4d", i_local_rank, dt, nsteps)

    step = 0

    def norm(u):
        return op.norm(dcoll, u, 2)

    from time import time
    t_last_step = time()

    logmgr.tick_before()
    for event in dt_stepper.run(t_end=final_t):
        if isinstance(event, dt_stepper.StateComputed):
            assert event.component_id == "w"

            step += 1
            logger.info("[%04d] t = %.5e |u| = %.5e ellapsed %.5e",
                        step, event.t,
                        norm(u=event.state_component[0]),
                        time() - t_last_step)

            t_last_step = time()
            logmgr.tick_after()
            logmgr.tick_before()

    logmgr.tick_after()
    logmgr.close()
    logger.info("Rank %d exiting", i_local_rank)
예제 #7
0
def main():
    from grudge.backends import guess_run_context
    rcon = guess_run_context(["cuda", "mpi"])

    if rcon.is_head_rank:
        mesh = make_wingmesh()
        #from grudge.mesh import make_rect_mesh
        #mesh = make_rect_mesh(
        #       boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"])
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3]:
        from pytools import add_python_path_relative_to_script
        add_python_path_relative_to_script("..")

        from gas_dynamics_initials import UniformMachFlow
        wing = UniformMachFlow(angle_of_attack=0)

        from grudge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=3,
                                 gamma=wing.gamma,
                                 mu=wing.mu,
                                 prandtl=wing.prandtl,
                                 spec_gas_const=wing.spec_gas_const,
                                 bc_inflow=wing,
                                 bc_outflow=wing,
                                 bc_noslip=wing,
                                 inflow_tag="inflow",
                                 outflow_tag="outflow",
                                 noslip_tag="noslip")

        discr = rcon.make_discretization(
            mesh_data,
            order=order,
            debug=[
                "cuda_no_plan",
                #"cuda_dump_kernels",
                #"dump_dataflow_graph",
                #"dump_optemplate_stages",
                #"dump_dataflow_graph",
                #"print_op_code"
                "cuda_no_metis",
            ],
            default_scalar_type=numpy.float64,
            tune_for=op.sym_operator())

        from grudge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        fields = wing.volume_interpolant(0, discr)

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print("---------------------------------------------")
            print("order %d" % order)
            print("---------------------------------------------")
            print("#elements=", len(mesh.elements))

        from grudge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from logpyle import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("navierstokes-%d.dat" % order, "w",
                            rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            from grudge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=200,
                #max_steps=500,
                logmgr=logmgr,
                max_dt_getter=lambda t: 0.6 * op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 200 == 0:
                    #if False:
                    visf = vis.make_file("wing-%d-%06d" % (order, step))

                    #rhs_fields = rhs(t, fields)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    from grudge.discretization import ones_on_boundary
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                            #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                            #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                        ],
                        expressions=[
                            ("p", "(0.4)*(e- 0.5*(rho_u*u))"),
                        ],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                t += dt

        finally:
            vis.close()
            logmgr.save()
            discr.close()
예제 #8
0
def main(write_output=True):
    from grudge.backends import guess_run_context
    rcon = guess_run_context(
        #["cuda"]
    )

    gamma = 1.4

    # at A=1 we have case of isentropic vortex, source terms
    # arise for other values
    densityA = 2.0

    from grudge.tools import EOCRecorder, to_obj_array
    eoc_rec = EOCRecorder()

    if rcon.is_head_rank:
        from grudge.mesh import \
                make_rect_mesh, \
                make_centered_regular_rect_mesh

        refine = 1
        mesh = make_centered_regular_rect_mesh((0, -5), (10, 5),
                                               n=(9, 9),
                                               post_refine_factor=refine)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [4, 5]:
        discr = rcon.make_discretization(
            mesh_data,
            order=order,
            debug=[  #"cuda_no_plan",
                #"print_op_code"
            ],
            default_scalar_type=numpy.float64)

        from grudge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "vortex-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        vortex = Vortex(beta=5,
                        gamma=gamma,
                        center=[5, 0],
                        velocity=[1, 0],
                        densityA=densityA)
        fields = vortex.volume_interpolant(0, discr)
        sources = SourceTerms(beta=5,
                              gamma=gamma,
                              center=[5, 0],
                              velocity=[1, 0],
                              densityA=densityA)

        from grudge.models.gas_dynamics import (GasDynamicsOperator,
                                                GammaLawEOS)
        from grudge.mesh import BTAG_ALL

        op = GasDynamicsOperator(dimensions=2,
                                 mu=0.0,
                                 prandtl=0.72,
                                 spec_gas_const=287.1,
                                 equation_of_state=GammaLawEOS(vortex.gamma),
                                 bc_inflow=vortex,
                                 bc_outflow=vortex,
                                 bc_noslip=vortex,
                                 inflow_tag=BTAG_ALL,
                                 source=sources)

        euler_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print("---------------------------------------------")
            print("order %d" % order)
            print("---------------------------------------------")
            print("#elements=", len(mesh.elements))

        # limiter setup -------------------------------------------------------
        from grudge.models.gas_dynamics import SlopeLimiter1NEuler
        limiter = SlopeLimiter1NEuler(discr, gamma, 2, op)

        # time stepper --------------------------------------------------------
        from grudge.timestep import SSPRK3TimeStepper, RK4TimeStepper
        #stepper = SSPRK3TimeStepper(limiter=limiter)
        #stepper = SSPRK3TimeStepper()
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from logpyle import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "euler-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        t = 0

        #fields = limiter(fields)

        try:
            from grudge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=.1,
                #max_steps=500,
                logmgr=logmgr,
                max_dt_getter=lambda t: 0.4 * op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 1 == 0 and write_output:
                    #if False:
                    visf = vis.make_file("vortex-%d-%04d" % (order, step))

                    true_fields = vortex.volume_interpolant(t, discr)

                    #rhs_fields = rhs(t, fields)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                            #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                            #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                            #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),

                            #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                            #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                            #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                        ],
                        expressions=[
                            #("diff_rho", "rho-true_rho"),
                            #("diff_e", "e-true_e"),
                            #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),
                            ("p", "0.4*(e- 0.5*(rho_u*u))"),
                        ],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

            true_fields = vortex.volume_interpolant(t, discr)
            l2_error = discr.norm(fields - true_fields)
            l2_error_rho = discr.norm(op.rho(fields) - op.rho(true_fields))
            l2_error_e = discr.norm(op.e(fields) - op.e(true_fields))
            l2_error_rhou = discr.norm(
                op.rho_u(fields) - op.rho_u(true_fields))
            l2_error_u = discr.norm(op.u(fields) - op.u(true_fields))

            eoc_rec.add_data_point(order, l2_error_rho)
            print()
            print(eoc_rec.pretty_print("P.Deg.", "L2 Error"))

            logmgr.set_constant("l2_error", l2_error)
            logmgr.set_constant("l2_error_rho", l2_error_rho)
            logmgr.set_constant("l2_error_e", l2_error_e)
            logmgr.set_constant("l2_error_rhou", l2_error_rhou)
            logmgr.set_constant("l2_error_u", l2_error_u)
            logmgr.set_constant("refinement", refine)

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()
예제 #9
0
def main(write_output=True):
    from pytools import add_python_path_relative_to_script
    add_python_path_relative_to_script("..")

    from grudge.backends import guess_run_context
    rcon = guess_run_context()

    from grudge.tools import EOCRecorder
    eoc_rec = EOCRecorder()

    if rcon.is_head_rank:
        from grudge.mesh.generator import \
                make_rect_mesh, \
                make_centered_regular_rect_mesh

        refine = 4
        mesh = make_centered_regular_rect_mesh((0, -5), (10, 5),
                                               n=(9, 9),
                                               post_refine_factor=refine)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    # a second mesh to regrid to
    if rcon.is_head_rank:
        from grudge.mesh.generator import \
                make_rect_mesh, \
                make_centered_regular_rect_mesh

        refine = 4
        mesh2 = make_centered_regular_rect_mesh((0, -5), (10, 5),
                                                n=(8, 8),
                                                post_refine_factor=refine)
        mesh_data2 = rcon.distribute_mesh(mesh2)
    else:
        mesh_data2 = rcon.receive_mesh()

    for order in [3, 4]:
        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         default_scalar_type=numpy.float64,
                                         quad_min_degrees={
                                             "gasdyn_vol": 3 * order,
                                             "gasdyn_face": 3 * order,
                                         })

        discr2 = rcon.make_discretization(mesh_data2,
                                          order=order,
                                          default_scalar_type=numpy.float64,
                                          quad_min_degrees={
                                              "gasdyn_vol": 3 * order,
                                              "gasdyn_face": 3 * order,
                                          })

        from grudge.visualization import SiloVisualizer, VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "vortex-%d" % order)
        #vis = SiloVisualizer(discr, rcon)

        from gas_dynamics_initials import Vortex
        vortex = Vortex()
        fields = vortex.volume_interpolant(0, discr)

        from grudge.models.gas_dynamics import GasDynamicsOperator
        from grudge.mesh import BTAG_ALL

        op = GasDynamicsOperator(dimensions=2,
                                 gamma=vortex.gamma,
                                 mu=vortex.mu,
                                 prandtl=vortex.prandtl,
                                 spec_gas_const=vortex.spec_gas_const,
                                 bc_inflow=vortex,
                                 bc_outflow=vortex,
                                 bc_noslip=vortex,
                                 inflow_tag=BTAG_ALL,
                                 source=None)

        euler_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print("---------------------------------------------")
            print("order %d" % order)
            print("---------------------------------------------")
            print("#elements for mesh 1 =", len(mesh.elements))
            print("#elements for mesh 2 =", len(mesh2.elements))

        # limiter ------------------------------------------------------------
        from grudge.models.gas_dynamics import SlopeLimiter1NEuler
        limiter = SlopeLimiter1NEuler(discr, vortex.gamma, 2, op)

        from grudge.timestep import SSPRK3TimeStepper
        #stepper = SSPRK3TimeStepper(limiter=limiter)
        stepper = SSPRK3TimeStepper()

        #from grudge.timestep import RK4TimeStepper
        #stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from logpyle import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "euler-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            final_time = 0.2
            from grudge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=final_time,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 10 == 0 and write_output:
                    #if False:
                    visf = vis.make_file("vortex-%d-%04d" % (order, step))

                    #true_fields = vortex.volume_interpolant(t, discr)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                            #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                            #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                            #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),

                            #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                            #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                            #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                        ],
                        #expressions=[
                        #("diff_rho", "rho-true_rho"),
                        #("diff_e", "e-true_e"),
                        #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                        #("p", "0.4*(e- 0.5*(rho_u*u))"),
                        #],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                #fields = limiter(fields)

                #regrid to discr2 at some arbitrary time
                if step == 21:

                    #get interpolated fields
                    fields = discr.get_regrid_values(fields,
                                                     discr2,
                                                     dtype=None,
                                                     use_btree=True,
                                                     thresh=1e-8)
                    #get new stepper (old one has reference to discr
                    stepper = SSPRK3TimeStepper()
                    #new bind
                    euler_ex = op.bind(discr2)
                    #new rhs
                    max_eigval = [0]

                    def rhs(t, q):
                        ode_rhs, speed = euler_ex(t, q)
                        max_eigval[0] = speed
                        return ode_rhs

                    rhs(t + dt, fields)
                    #add logmanager
                    #discr2.add_instrumentation(logmgr)
                    #new step_it
                    step_it = times_and_steps(
                        final_time=final_time,
                        logmgr=logmgr,
                        max_dt_getter=lambda t: op.estimate_timestep(
                            discr2,
                            stepper=stepper,
                            t=t,
                            max_eigenvalue=max_eigval[0]))

                    #new visualization
                    vis.close()
                    vis = VtkVisualizer(discr2, rcon,
                                        "vortexNewGrid-%d" % order)
                    discr = discr2

                assert not numpy.isnan(numpy.sum(fields[0]))

            true_fields = vortex.volume_interpolant(final_time, discr)
            l2_error = discr.norm(fields - true_fields)
            l2_error_rho = discr.norm(op.rho(fields) - op.rho(true_fields))
            l2_error_e = discr.norm(op.e(fields) - op.e(true_fields))
            l2_error_rhou = discr.norm(
                op.rho_u(fields) - op.rho_u(true_fields))
            l2_error_u = discr.norm(op.u(fields) - op.u(true_fields))

            eoc_rec.add_data_point(order, l2_error)
            print()
            print(eoc_rec.pretty_print("P.Deg.", "L2 Error"))

            logmgr.set_constant("l2_error", l2_error)
            logmgr.set_constant("l2_error_rho", l2_error_rho)
            logmgr.set_constant("l2_error_e", l2_error_e)
            logmgr.set_constant("l2_error_rhou", l2_error_rhou)
            logmgr.set_constant("l2_error_u", l2_error_u)
            logmgr.set_constant("refinement", refine)

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()
예제 #10
0
def main():
    from grudge.backends import guess_run_context
    rcon = guess_run_context()

    if rcon.is_head_rank:
        mesh = make_nacamesh()
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    from pytools import add_python_path_relative_to_script
    add_python_path_relative_to_script("..")

    for order in [4]:
        from gas_dynamics_initials import UniformMachFlow
        uniform_flow = UniformMachFlow()

        from grudge.models.gas_dynamics import GasDynamicsOperator, GammaLawEOS
        op = GasDynamicsOperator(dimensions=2,
                                 equation_of_state=GammaLawEOS(
                                     uniform_flow.gamma),
                                 prandtl=uniform_flow.prandtl,
                                 spec_gas_const=uniform_flow.spec_gas_const,
                                 mu=uniform_flow.mu,
                                 bc_inflow=uniform_flow,
                                 bc_outflow=uniform_flow,
                                 bc_noslip=uniform_flow,
                                 inflow_tag="inflow",
                                 outflow_tag="outflow",
                                 noslip_tag="noslip")

        discr = rcon.make_discretization(
            mesh_data,
            order=order,
            debug=[
                "cuda_no_plan",
                #"cuda_dump_kernels",
                #"dump_optemplate_stages",
                #"dump_dataflow_graph",
                #"print_op_code"
            ],
            default_scalar_type=numpy.float32,
            tune_for=op.sym_operator())

        from grudge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        fields = uniform_flow.volume_interpolant(0, discr)

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print("---------------------------------------------")
            print("order %d" % order)
            print("---------------------------------------------")
            print("#elements=", len(mesh.elements))

        from grudge.timestep.runge_kutta import \
                ODE23TimeStepper, LSRK4TimeStepper
        stepper = ODE23TimeStepper(
            dtype=discr.default_scalar_type,
            rtol=1e-6,
            vector_primitive_factory=discr.get_vector_primitive_factory())
        #stepper = LSRK4TimeStepper(dtype=discr.default_scalar_type)

        # diagnostics setup ---------------------------------------------------
        from logpyle import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("cns-naca-%d.dat" % order, "w", rcon.communicator)

        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        from logpyle import LogQuantity

        class ChangeSinceLastStep(LogQuantity):
            """Records the change of a variable between a time step and the previous
               one"""
            def __init__(self, name="change"):
                LogQuantity.__init__(self, name, "1",
                                     "Change since last time step")

                self.old_fields = 0

            def __call__(self):
                result = discr.norm(fields - self.old_fields)
                self.old_fields = fields
                return result

        #logmgr.add_quantity(ChangeSinceLastStep())

        # filter setup-------------------------------------------------------------
        from grudge.discretization import Filter, ExponentialFilterResponseFunction
        mode_filter = Filter(
            discr,
            ExponentialFilterResponseFunction(min_amplification=0.9, order=4))
        # timestep loop -------------------------------------------------------

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        try:
            from grudge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=200,
                #max_steps=500,
                logmgr=logmgr,
                max_dt_getter=lambda t: next_dt,
                taken_dt_getter=lambda: taken_dt)

            model_stepper = LSRK4TimeStepper()
            next_dt = op.estimate_timestep(discr,
                                           stepper=model_stepper,
                                           t=0,
                                           max_eigenvalue=max_eigval[0])

            for step, t, dt in step_it:
                if step % 10 == 0:
                    visf = vis.make_file("naca-%d-%06d" % (order, step))

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("true_rho", op.rho(true_fields)),
                            #("true_e", op.e(true_fields)),
                            #("true_rho_u", op.rho_u(true_fields)),
                            #("true_u", op.u(true_fields)),

                            #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                            #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                            #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                        ],
                        expressions=[
                            #("diff_rho", "rho-true_rho"),
                            #("diff_e", "e-true_e"),
                            #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),
                            ("p", "(0.4)*(e- 0.5*(rho_u*u))"),
                        ],
                        time=t,
                        step=step)
                    visf.close()

                fields, t, taken_dt, next_dt = stepper(fields, t, dt, rhs)
                fields = mode_filter(fields)

        finally:
            vis.close()
            logmgr.save()
            discr.close()
예제 #11
0
def main(final_time=1, write_output=False):
    from grudge.backends import guess_run_context
    rcon = guess_run_context()

    from grudge.tools import EOCRecorder, to_obj_array
    eoc_rec = EOCRecorder()

    if rcon.is_head_rank:
        from grudge.mesh import make_box_mesh
        mesh = make_box_mesh((0,0,0), (10,10,10), max_volume=0.5)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3, 4, 5]:
        discr = rcon.make_discretization(mesh_data, order=order,
                        default_scalar_type=numpy.float64)

        from grudge.visualization import SiloVisualizer, VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "sinewave-%d" % order)
        #vis = SiloVisualizer(discr, rcon)

        sinewave = SineWave()
        fields = sinewave.volume_interpolant(0, discr)
        gamma, mu, prandtl, spec_gas_const = sinewave.properties()

        from grudge.mesh import BTAG_ALL
        from grudge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=mesh.dimensions, gamma=gamma, mu=mu,
                prandtl=prandtl, spec_gas_const=spec_gas_const,
                bc_inflow=sinewave, bc_outflow=sinewave, bc_noslip=sinewave,
                inflow_tag=BTAG_ALL, source=None)

        euler_ex = op.bind(discr)

        max_eigval = [0]
        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs
        rhs(0, fields)

        if rcon.is_head_rank:
            print("---------------------------------------------")
            print("order %d" % order)
            print("---------------------------------------------")
            print("#elements=", len(mesh.elements))

        from grudge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from logpyle import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_name = ("euler-sinewave-%(order)d-%(els)d.dat"
                    % {"order":order, "els":len(mesh.elements)})
        else:
            log_name = False
        logmgr = LogManager(log_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            from grudge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=final_time, logmgr=logmgr,
                    max_dt_getter=lambda t: op.estimate_timestep(discr,
                        stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                #if step % 10 == 0:
                if write_output:
                    visf = vis.make_file("sinewave-%d-%04d" % (order, step))

                    #from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(op.u(fields), kind="numpy")),

                                #("true_rho", op.rho(true_fields)),
                                #("true_e", op.e(true_fields)),
                                #("true_rho_u", op.rho_u(true_fields)),
                                #("true_u", op.u(true_fields)),

                                #("rhs_rho", op.rho(rhs_fields)),
                                #("rhs_e", op.e(rhs_fields)),
                                #("rhs_rho_u", op.rho_u(rhs_fields)),
                                ],
                            #expressions=[
                                #("diff_rho", "rho-true_rho"),
                                #("diff_e", "e-true_e"),
                                #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                                #("p", "0.4*(e- 0.5*(rho_u*u))"),
                                #],
                            time=t, step=step
                            )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

        finally:
            vis.close()
            logmgr.close()
            discr.close()

        true_fields = sinewave.volume_interpolant(t, discr)
        eoc_rec.add_data_point(order, discr.norm(fields-true_fields))
        print()
        print(eoc_rec.pretty_print("P.Deg.", "L2 Error"))
예제 #12
0
def main(write_output=True,
         flux_type_arg="upwind",
         dtype=np.float64,
         debug=[]):
    from math import sin, cos, pi, exp, sqrt  # noqa

    from grudge.backends import guess_run_context
    rcon = guess_run_context()

    if rcon.is_head_rank:
        from grudge.mesh.reader.gmsh import generate_gmsh
        mesh = generate_gmsh(GEOMETRY,
                             2,
                             allow_internal_boundaries=True,
                             force_dimension=2)

        print("%d elements" % len(mesh.elements))
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data,
                                     order=4,
                                     debug=debug,
                                     default_scalar_type=dtype)
    from grudge.timestep.runge_kutta import LSRK4TimeStepper
    stepper = LSRK4TimeStepper(dtype=dtype)

    from grudge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "fld")

    source_center = 0
    source_width = 0.05
    source_omega = 3

    import grudge.symbolic as sym
    sym_x = sym.nodes(2)
    sym_source_center_dist = sym_x - source_center

    from grudge.models.wave import StrongWaveOperator
    op = StrongWaveOperator(
        -1,
        discr.dimensions,
        source_f=sym.FunctionSymbol("sin")(
            source_omega * sym.ScalarParameter("t")) *
        sym.FunctionSymbol("exp")(
            -np.dot(sym_source_center_dist, sym_source_center_dist) /
            source_width**2),
        dirichlet_tag="boundary",
        neumann_tag=BTAG_NONE,
        radiation_tag=BTAG_NONE,
        flux_type=flux_type_arg)

    from grudge.tools import join_fields
    fields = join_fields(
        discr.volume_zeros(dtype=dtype),
        [discr.volume_zeros(dtype=dtype) for i in range(discr.dimensions)])

    # diagnostics setup -------------------------------------------------------
    from logpyle import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "wiggly.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    stepper.add_instrumentation(logmgr)

    logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)
    try:
        from grudge.timestep import times_and_steps
        step_it = times_and_steps(
            final_time=4,
            logmgr=logmgr,
            max_dt_getter=lambda t: op.estimate_timestep(
                discr, stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)

                vis.add_data(visf, [
                    ("u", fields[0]),
                    ("v", fields[1:]),
                ],
                             time=t,
                             step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 1
        assert fields[0].dtype == dtype

    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
예제 #13
0
def main():
    from grudge.backends import guess_run_context
    rcon = guess_run_context()

    from grudge.tools import to_obj_array

    if rcon.is_head_rank:
        from grudge.mesh.generator import make_rect_mesh
        mesh = make_rect_mesh((-5, -5), (5, 5), max_area=0.01)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [1]:
        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         default_scalar_type=numpy.float64)

        from grudge.visualization import SiloVisualizer, VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "Sod2D-%d" % order)
        #vis = SiloVisualizer(discr, rcon)

        sod_field = Sod(gamma=1.4)
        fields = sod_field.volume_interpolant(0, discr)

        from grudge.models.gas_dynamics import GasDynamicsOperator
        from grudge.mesh import BTAG_ALL
        op = GasDynamicsOperator(dimensions=2,
                                 gamma=sod_field.gamma,
                                 mu=0.0,
                                 prandtl=sod_field.prandtl,
                                 bc_inflow=sod_field,
                                 bc_outflow=sod_field,
                                 bc_noslip=sod_field,
                                 inflow_tag=BTAG_ALL,
                                 source=None)

        euler_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print("---------------------------------------------")
            print("order %d" % order)
            print("---------------------------------------------")
            print("#elements=", len(mesh.elements))

        # limiter setup ------------------------------------------------------------
        from grudge.models.gas_dynamics import SlopeLimiter1NEuler
        limiter = SlopeLimiter1NEuler(discr, sod_field.gamma, 2, op)

        # integrator setup---------------------------------------------------------
        from grudge.timestep import SSPRK3TimeStepper, RK4TimeStepper
        stepper = SSPRK3TimeStepper(limiter=limiter)
        #stepper = SSPRK3TimeStepper()
        #stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from logpyle import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("euler-%d.dat" % order, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # filter setup-------------------------------------------------------------
        from grudge.discretization import Filter, ExponentialFilterResponseFunction
        mode_filter = Filter(
            discr,
            ExponentialFilterResponseFunction(min_amplification=0.9, order=4))

        # timestep loop -------------------------------------------------------
        try:
            from grudge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=1.0,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 5 == 0:
                    #if False:
                    visf = vis.make_file("vortex-%d-%04d" % (order, step))

                    #true_fields = vortex.volume_interpolant(t, discr)

                    #from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("true_rho", op.rho(true_fields)),
                            #("true_e", op.e(true_fields)),
                            #("true_rho_u", op.rho_u(true_fields)),
                            #("true_u", op.u(true_fields)),

                            #("rhs_rho", op.rho(rhs_fields)),
                            #("rhs_e", op.e(rhs_fields)),
                            #("rhs_rho_u", op.rho_u(rhs_fields)),
                        ],
                        #expressions=[
                        #("diff_rho", "rho-true_rho"),
                        #("diff_e", "e-true_e"),
                        #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                        #("p", "0.4*(e- 0.5*(rho_u*u))"),
                        #],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                # fields = limiter(fields)
                # fields = mode_filter(fields)

                assert not numpy.isnan(numpy.sum(fields[0]))
        finally:
            vis.close()
            logmgr.close()
            discr.close()

        # not solution, just to check against when making code changes
        true_fields = sod_field.volume_interpolant(t, discr)
        print(discr.norm(fields - true_fields))
예제 #14
0
    u = discr.interpolate_volume_function(lambda x, el: case.u0(x[0]))

    # diagnostics setup -------------------------------------------------------
    from logpyle import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "burgers.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from grudge.log import LpNorm
    u_getter = lambda: u
    logmgr.add_quantity(LpNorm(u_getter, discr, p=1, name="l1_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l1_u", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    rhs = op.bind(discr)

    from grudge.timestep.runge_kutta import ODE45TimeStepper, LSRK4TimeStepper
    stepper = ODE45TimeStepper()
예제 #15
0
def main(write_output=True):
    from math import sqrt, pi, exp
    from os.path import join

    from grudge.backends import guess_run_context
    rcon = guess_run_context()

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    output_dir = "maxwell-2d"
    import os
    if not os.access(output_dir, os.F_OK):
        os.makedirs(output_dir)

    from grudge.mesh.generator import make_disk_mesh
    mesh = make_disk_mesh(r=0.5, max_area=1e-3)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    class CurrentSource:
        shape = (3, )

        def __call__(self, x, el):
            return [0, 0, exp(-80 * la.norm(x))]

    order = 3
    final_time = 1e-8
    discr = rcon.make_discretization(mesh_data,
                                     order=order,
                                     debug=["cuda_no_plan"])

    from grudge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, join(output_dir, "em-%d" % order))

    if rcon.is_head_rank:
        print("order %d" % order)
        print("#elements=", len(mesh.elements))

    from grudge.mesh import BTAG_ALL, BTAG_NONE
    from grudge.models.em import TMMaxwellOperator
    from grudge.data import make_tdep_given, TimeIntervalGivenFunction
    op = TMMaxwellOperator(epsilon,
                           mu,
                           flux_type=1,
                           current=TimeIntervalGivenFunction(
                               make_tdep_given(CurrentSource()),
                               off_time=final_time / 10),
                           absorb_tag=BTAG_ALL,
                           pec_tag=BTAG_NONE)
    fields = op.assemble_eh(discr=discr)

    from grudge.timestep import LSRK4TimeStepper
    stepper = LSRK4TimeStepper()
    from time import time
    last_tstep = time()
    t = 0

    # diagnostics setup ---------------------------------------------------
    from logpyle import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        log_file_name = join(output_dir, "maxwell-%d.dat" % order)
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from logpyle import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    from grudge.log import EMFieldGetter, add_em_quantities
    field_getter = EMFieldGetter(discr, op, lambda: fields)
    add_em_quantities(logmgr, op, field_getter)

    logmgr.add_watches(
        ["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"])

    # timestep loop -------------------------------------------------------
    rhs = op.bind(discr)

    try:
        from grudge.timestep import times_and_steps
        step_it = times_and_steps(
            final_time=final_time,
            logmgr=logmgr,
            max_dt_getter=lambda t: op.estimate_timestep(
                discr, stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                e, h = op.split_eh(fields)
                visf = vis.make_file(
                    join(output_dir, "em-%d-%04d" % (order, step)))
                vis.add_data(visf, [
                    ("e", discr.convert_volume(e, "numpy")),
                    ("h", discr.convert_volume(h, "numpy")),
                ],
                             time=t,
                             step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        assert discr.norm(fields) < 0.03
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
예제 #16
0
def main():
    import logging
    logging.basicConfig(level=logging.INFO)

    from grudge.backends import guess_run_context
    rcon = guess_run_context()

    if rcon.is_head_rank:
        if True:
            mesh = make_squaremesh()
        else:
            from grudge.mesh import make_rect_mesh
            mesh = make_rect_mesh(
                boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"],
                max_area=0.1)

        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    from pytools import add_python_path_relative_to_script
    add_python_path_relative_to_script(".")

    for order in [3]:
        from gas_dynamics_initials import UniformMachFlow
        square = UniformMachFlow(gaussian_pulse_at=numpy.array([-2, 2]),
                                 pulse_magnitude=0.003)

        from grudge.models.gas_dynamics import (GasDynamicsOperator,
                                                GammaLawEOS)

        op = GasDynamicsOperator(dimensions=2,
                                 equation_of_state=GammaLawEOS(square.gamma),
                                 mu=square.mu,
                                 prandtl=square.prandtl,
                                 spec_gas_const=square.spec_gas_const,
                                 bc_inflow=square,
                                 bc_outflow=square,
                                 bc_noslip=square,
                                 inflow_tag="inflow",
                                 outflow_tag="outflow",
                                 noslip_tag="noslip")

        discr = rcon.make_discretization(
            mesh_data,
            order=order,
            debug=[
                "cuda_no_plan",
                "cuda_dump_kernels",
                #"dump_dataflow_graph",
                #"dump_optemplate_stages",
                #"dump_dataflow_graph",
                #"dump_op_code"
                #"cuda_no_plan_el_local"
            ],
            default_scalar_type=numpy.float64,
            tune_for=op.sym_operator(),
            quad_min_degrees={
                "gasdyn_vol": 3 * order,
                "gasdyn_face": 3 * order,
            })

        from grudge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        from grudge.timestep.runge_kutta import (LSRK4TimeStepper,
                                                 ODE23TimeStepper,
                                                 ODE45TimeStepper)
        from grudge.timestep.dumka3 import Dumka3TimeStepper
        #stepper = LSRK4TimeStepper(dtype=discr.default_scalar_type,
        #vector_primitive_factory=discr.get_vector_primitive_factory())

        stepper = ODE23TimeStepper(
            dtype=discr.default_scalar_type,
            rtol=1e-6,
            vector_primitive_factory=discr.get_vector_primitive_factory())
        # Dumka works kind of poorly
        #stepper = Dumka3TimeStepper(dtype=discr.default_scalar_type,
        #rtol=1e-7, pol_index=2,
        #vector_primitive_factory=discr.get_vector_primitive_factory())

        #from grudge.timestep.dumka3 import Dumka3TimeStepper
        #stepper = Dumka3TimeStepper(3, rtol=1e-7)

        # diagnostics setup ---------------------------------------------------
        from logpyle import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("cns-square-sp-%d.dat" % order, "w",
                            rcon.communicator)

        add_run_info(logmgr)
        add_general_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        from logpyle import LogQuantity

        class ChangeSinceLastStep(LogQuantity):
            """Records the change of a variable between a time step and the previous
               one"""
            def __init__(self, name="change"):
                LogQuantity.__init__(self, name, "1",
                                     "Change since last time step")

                self.old_fields = 0

            def __call__(self):
                result = discr.norm(fields - self.old_fields)
                self.old_fields = fields
                return result

        #logmgr.add_quantity(ChangeSinceLastStep())

        add_simulation_quantities(logmgr)
        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # filter setup ------------------------------------------------------------
        from grudge.discretization import Filter, ExponentialFilterResponseFunction
        mode_filter = Filter(
            discr,
            ExponentialFilterResponseFunction(min_amplification=0.95, order=6))

        # timestep loop -------------------------------------------------------
        fields = square.volume_interpolant(0, discr)

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print("---------------------------------------------")
            print("order %d" % order)
            print("---------------------------------------------")
            print("#elements=", len(mesh.elements))

        try:
            from grudge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=1000,
                #max_steps=500,
                logmgr=logmgr,
                max_dt_getter=lambda t: next_dt,
                taken_dt_getter=lambda: taken_dt)

            model_stepper = LSRK4TimeStepper()
            next_dt = op.estimate_timestep(discr,
                                           stepper=model_stepper,
                                           t=0,
                                           max_eigenvalue=max_eigval[0])

            for step, t, dt in step_it:
                #if (step % 10000 == 0): #and step < 950000) or (step % 500 == 0 and step > 950000):
                #if False:
                if step % 5 == 0:
                    visf = vis.make_file("square-%d-%06d" % (order, step))

                    #from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(visf, [
                        ("rho",
                         discr.convert_volume(op.rho(fields), kind="numpy")),
                        ("e", discr.convert_volume(op.e(fields),
                                                   kind="numpy")),
                        ("rho_u",
                         discr.convert_volume(op.rho_u(fields), kind="numpy")),
                        ("u", discr.convert_volume(op.u(fields),
                                                   kind="numpy")),
                    ],
                                 expressions=[
                                     ("p", "(0.4)*(e- 0.5*(rho_u*u))"),
                                 ],
                                 time=t,
                                 step=step)
                    visf.close()

                if stepper.adaptive:
                    fields, t, taken_dt, next_dt = stepper(fields, t, dt, rhs)
                else:
                    taken_dt = dt
                    fields = stepper(fields, t, dt, rhs)
                    dt = op.estimate_timestep(discr,
                                              stepper=model_stepper,
                                              t=0,
                                              max_eigenvalue=max_eigval[0])

                #fields = mode_filter(fields)

        finally:
            vis.close()
            logmgr.save()
            discr.close()
예제 #17
0
def main(write_output=True):
    from grudge.timestep.runge_kutta import LSRK4TimeStepper
    from math import sqrt, pi, exp

    from grudge.backends import guess_run_context
    rcon = guess_run_context()

    epsilon0 = 8.8541878176e-12  # C**2 / (N m**2)
    mu0 = 4 * pi * 1e-7  # N/A**2.
    epsilon = 1 * epsilon0
    mu = 1 * mu0

    c = 1 / sqrt(mu * epsilon)

    pml_width = 0.5
    #mesh = make_mesh(a=np.array((-1,-1,-1)), b=np.array((1,1,1)),
    #mesh = make_mesh(a=np.array((-3,-3)), b=np.array((3,3)),
    mesh = make_mesh(
        a=np.array((-1, -1)),
        b=np.array((1, 1)),
        #mesh = make_mesh(a=np.array((-2,-2)), b=np.array((2,2)),
        pml_width=pml_width,
        max_volume=0.01)

    if rcon.is_head_rank:
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    class Current:
        def volume_interpolant(self, t, discr):
            from grudge.tools import make_obj_array

            result = discr.volume_zeros(kind="numpy", dtype=np.float64)

            omega = 6 * c
            if omega * t > 2 * pi:
                return make_obj_array([result, result, result])

            x = make_obj_array(discr.nodes.T)
            r = np.sqrt(np.dot(x, x))

            idx = r < 0.3
            result[idx] = (1+np.cos(pi*r/0.3))[idx] \
                    *np.sin(omega*t)**3

            result = discr.convert_volume(result,
                                          kind=discr.compute_kind,
                                          dtype=discr.default_scalar_type)
            return make_obj_array([-result, result, result])

    order = 3
    discr = rcon.make_discretization(mesh_data,
                                     order=order,
                                     debug=["cuda_no_plan"])

    from grudge.visualization import VtkVisualizer
    if write_output:
        vis = VtkVisualizer(discr, rcon, "em-%d" % order)

    from grudge.mesh import BTAG_ALL, BTAG_NONE
    from grudge.data import GivenFunction, TimeHarmonicGivenFunction, TimeIntervalGivenFunction
    from grudge.models.em import MaxwellOperator
    from grudge.models.pml import \
            AbarbanelGottliebPMLMaxwellOperator, \
            AbarbanelGottliebPMLTMMaxwellOperator, \
            AbarbanelGottliebPMLTEMaxwellOperator

    op = AbarbanelGottliebPMLTEMaxwellOperator(epsilon,
                                               mu,
                                               flux_type=1,
                                               current=Current(),
                                               pec_tag=BTAG_ALL,
                                               absorb_tag=BTAG_NONE,
                                               add_decay=True)

    fields = op.assemble_ehpq(discr=discr)

    stepper = LSRK4TimeStepper()

    if rcon.is_head_rank:
        print("order %d" % order)
        print("#elements=", len(mesh.elements))

    # diagnostics setup ---------------------------------------------------
    from logpyle import LogManager, add_general_quantities, \
            add_simulation_quantities, add_run_info

    if write_output:
        log_file_name = "maxwell-%d.dat" % order
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)
    stepper.add_instrumentation(logmgr)

    from logpyle import IntervalTimer
    vis_timer = IntervalTimer("t_vis", "Time spent visualizing")
    logmgr.add_quantity(vis_timer)

    from grudge.log import EMFieldGetter, add_em_quantities
    field_getter = EMFieldGetter(discr, op, lambda: fields)
    add_em_quantities(logmgr, op, field_getter)

    logmgr.add_watches(
        ["step.max", "t_sim.max", ("W_field", "W_el+W_mag"), "t_step.max"])

    from grudge.log import LpNorm

    class FieldIdxGetter:
        def __init__(self, whole_getter, idx):
            self.whole_getter = whole_getter
            self.idx = idx

        def __call__(self):
            return self.whole_getter()[self.idx]

    # timestep loop -------------------------------------------------------

    t = 0
    pml_coeff = op.coefficients_from_width(discr, width=pml_width)
    rhs = op.bind(discr, pml_coeff)

    try:
        from grudge.timestep import times_and_steps
        step_it = times_and_steps(
            final_time=4 / c,
            logmgr=logmgr,
            max_dt_getter=lambda t: op.estimate_timestep(
                discr, stepper=stepper, t=t, fields=fields))

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                e, h, p, q = op.split_ehpq(fields)
                visf = vis.make_file("em-%d-%04d" % (order, step))
                #pml_rhs_e, pml_rhs_h, pml_rhs_p, pml_rhs_q = \
                #op.split_ehpq(rhs(t, fields))
                j = Current().volume_interpolant(t, discr)
                vis.add_data(
                    visf,
                    [
                        ("e", discr.convert_volume(e, "numpy")),
                        ("h", discr.convert_volume(h, "numpy")),
                        ("p", discr.convert_volume(p, "numpy")),
                        ("q", discr.convert_volume(q, "numpy")),
                        ("j", discr.convert_volume(j, "numpy")),
                        #("pml_rhs_e", pml_rhs_e),
                        #("pml_rhs_h", pml_rhs_h),
                        #("pml_rhs_p", pml_rhs_p),
                        #("pml_rhs_q", pml_rhs_q),
                        #("max_rhs_e", max_rhs_e),
                        #("max_rhs_h", max_rhs_h),
                        #("max_rhs_p", max_rhs_p),
                        #("max_rhs_q", max_rhs_q),
                    ],
                    time=t,
                    step=step)
                visf.close()

            fields = stepper(fields, t, dt, rhs)

        _, _, energies_data = logmgr.get_expr_dataset("W_el+W_mag")
        energies = [value for tick_nbr, value in energies_data]

        assert energies[-1] < max(energies) * 1e-2

    finally:
        logmgr.close()

        if write_output:
            vis.close()
예제 #18
0
def main(write_output=True):
    from pytools import add_python_path_relative_to_script
    add_python_path_relative_to_script("..")

    from grudge.backends import guess_run_context
    rcon = guess_run_context()

    from grudge.tools import EOCRecorder
    eoc_rec = EOCRecorder()

    if rcon.is_head_rank:
        from grudge.mesh.generator import \
                make_rect_mesh, \
                make_centered_regular_rect_mesh

        refine = 4
        mesh = make_centered_regular_rect_mesh((0, -5), (10, 5),
                                               n=(9, 9),
                                               post_refine_factor=refine)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3, 4, 5]:
        from gas_dynamics_initials import Vortex
        flow = Vortex()

        from grudge.models.gas_dynamics import (GasDynamicsOperator,
                                                PolytropeEOS, GammaLawEOS)

        from grudge.mesh import BTAG_ALL
        # works equally well for GammaLawEOS
        op = GasDynamicsOperator(dimensions=2,
                                 mu=flow.mu,
                                 prandtl=flow.prandtl,
                                 spec_gas_const=flow.spec_gas_const,
                                 equation_of_state=PolytropeEOS(flow.gamma),
                                 bc_inflow=flow,
                                 bc_outflow=flow,
                                 bc_noslip=flow,
                                 inflow_tag=BTAG_ALL,
                                 source=None)

        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         default_scalar_type=numpy.float64,
                                         quad_min_degrees={
                                             "gasdyn_vol": 3 * order,
                                             "gasdyn_face": 3 * order,
                                         },
                                         tune_for=op.sym_operator(),
                                         debug=["cuda_no_plan"])

        from grudge.visualization import SiloVisualizer, VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "vortex-%d" % order)
        #vis = SiloVisualizer(discr, rcon)

        fields = flow.volume_interpolant(0, discr)

        euler_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = euler_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print("---------------------------------------------")
            print("order %d" % order)
            print("---------------------------------------------")
            print("#elements=", len(mesh.elements))

        # limiter ------------------------------------------------------------
        from grudge.models.gas_dynamics import SlopeLimiter1NEuler
        limiter = SlopeLimiter1NEuler(discr, flow.gamma, 2, op)

        from grudge.timestep.runge_kutta import SSP3TimeStepper
        #stepper = SSP3TimeStepper(limiter=limiter)
        stepper = SSP3TimeStepper(
            vector_primitive_factory=discr.get_vector_primitive_factory())

        #from grudge.timestep import RK4TimeStepper
        #stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from logpyle import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        if write_output:
            log_file_name = "euler-%d.dat" % order
        else:
            log_file_name = None

        logmgr = LogManager(log_file_name, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            final_time = flow.final_time
            from grudge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=final_time,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            print("run until t=%g" % final_time)
            for step, t, dt in step_it:
                if step % 10 == 0 and write_output:
                    #if False:
                    visf = vis.make_file("vortex-%d-%04d" % (order, step))

                    #true_fields = vortex.volume_interpolant(t, discr)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                            #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                            #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                            #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),

                            #("rhs_rho", discr.convert_volume(op.rho(rhs_fields), kind="numpy")),
                            #("rhs_e", discr.convert_volume(op.e(rhs_fields), kind="numpy")),
                            #("rhs_rho_u", discr.convert_volume(op.rho_u(rhs_fields), kind="numpy")),
                        ],
                        #expressions=[
                        #("diff_rho", "rho-true_rho"),
                        #("diff_e", "e-true_e"),
                        #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),

                        #("p", "0.4*(e- 0.5*(rho_u*u))"),
                        #],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)
                #fields = limiter(fields)

                assert not numpy.isnan(numpy.sum(fields[0]))

            true_fields = flow.volume_interpolant(final_time, discr)
            l2_error = discr.norm(fields - true_fields)
            l2_error_rho = discr.norm(op.rho(fields) - op.rho(true_fields))
            l2_error_e = discr.norm(op.e(fields) - op.e(true_fields))
            l2_error_rhou = discr.norm(
                op.rho_u(fields) - op.rho_u(true_fields))
            l2_error_u = discr.norm(op.u(fields) - op.u(true_fields))

            eoc_rec.add_data_point(order, l2_error)
            print()
            print(eoc_rec.pretty_print("P.Deg.", "L2 Error"))

            logmgr.set_constant("l2_error", l2_error)
            logmgr.set_constant("l2_error_rho", l2_error_rho)
            logmgr.set_constant("l2_error_e", l2_error_e)
            logmgr.set_constant("l2_error_rhou", l2_error_rhou)
            logmgr.set_constant("l2_error_u", l2_error_u)
            logmgr.set_constant("refinement", refine)

        finally:
            if write_output:
                vis.close()

            logmgr.close()
            discr.close()

    # after order loop
    assert eoc_rec.estimate_order_of_convergence()[0, 1] > 6
예제 #19
0
def main():
    from grudge.backends import guess_run_context
    rcon = guess_run_context(
        #["cuda"]
    )

    from grudge.tools import EOCRecorder, to_obj_array
    eoc_rec = EOCRecorder()

    def boundary_tagger(vertices, el, face_nr, all_v):
        return ["inflow"]

    if rcon.is_head_rank:
        from grudge.mesh import make_rect_mesh, \
                               make_centered_regular_rect_mesh
        #mesh = make_rect_mesh((0,0), (10,1), max_area=0.01)
        refine = 1
        mesh = make_centered_regular_rect_mesh(
            (0, 0),
            (10, 1),
            n=(20, 4),
            #periodicity=(True, False),
            post_refine_factor=refine,
            boundary_tagger=boundary_tagger)
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3]:
        discr = rcon.make_discretization(mesh_data,
                                         order=order,
                                         default_scalar_type=numpy.float64)

        from grudge.visualization import SiloVisualizer, VtkVisualizer
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        shearflow = SteadyShearFlow()
        fields = shearflow.volume_interpolant(0, discr)
        gamma, mu, prandtl, spec_gas_const = shearflow.properties()

        from grudge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=2,
                                 gamma=gamma,
                                 mu=mu,
                                 prandtl=prandtl,
                                 spec_gas_const=spec_gas_const,
                                 bc_inflow=shearflow,
                                 bc_outflow=shearflow,
                                 bc_noslip=shearflow,
                                 inflow_tag="inflow",
                                 outflow_tag="outflow",
                                 noslip_tag="noslip")

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        # needed to get first estimate of maximum eigenvalue
        rhs(0, fields)

        if rcon.is_head_rank:
            print("---------------------------------------------")
            print("order %d" % order)
            print("---------------------------------------------")
            print("#elements=", len(mesh.elements))

        from grudge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from logpyle import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("navierstokes-cpu-%d-%d.dat" % (order, refine),
                            "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        # timestep loop -------------------------------------------------------
        try:
            from grudge.timestep import times_and_steps
            step_it = times_and_steps(
                final_time=0.3,
                #max_steps=500,
                logmgr=logmgr,
                max_dt_getter=lambda t: op.estimate_timestep(
                    discr, stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 10 == 0:
                    #if False:
                    visf = vis.make_file("shearflow-%d-%04d" % (order, step))

                    #true_fields = shearflow.volume_interpolant(t, discr)

                    from pyvisfile.silo import DB_VARTYPE_VECTOR
                    vis.add_data(
                        visf,
                        [
                            ("rho",
                             discr.convert_volume(op.rho(fields),
                                                  kind="numpy")),
                            ("e",
                             discr.convert_volume(op.e(fields), kind="numpy")),
                            ("rho_u",
                             discr.convert_volume(op.rho_u(fields),
                                                  kind="numpy")),
                            ("u",
                             discr.convert_volume(op.u(fields), kind="numpy")),

                            #("true_rho", discr.convert_volume(op.rho(true_fields), kind="numpy")),
                            #("true_e", discr.convert_volume(op.e(true_fields), kind="numpy")),
                            #("true_rho_u", discr.convert_volume(op.rho_u(true_fields), kind="numpy")),
                            #("true_u", discr.convert_volume(op.u(true_fields), kind="numpy")),
                        ],
                        expressions=[
                            #("diff_rho", "rho-true_rho"),
                            #("diff_e", "e-true_e"),
                            #("diff_rho_u", "rho_u-true_rho_u", DB_VARTYPE_VECTOR),
                            ("p", "0.4*(e- 0.5*(rho_u*u))"),
                        ],
                        time=t,
                        step=step)
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

            true_fields = shearflow.volume_interpolant(t, discr)
            l2_error = discr.norm(op.u(fields) - op.u(true_fields))
            eoc_rec.add_data_point(order, l2_error)
            print()
            print(eoc_rec.pretty_print("P.Deg.", "L2 Error"))

            logmgr.set_constant("l2_error", l2_error)

        finally:
            vis.close()
            logmgr.save()
            discr.close()
예제 #20
0
def main(write_output=True) :
    from math import sin, cos, pi, exp, sqrt
    from grudge.data import TimeConstantGivenFunction, \
            ConstantGivenFunction

    from grudge.backends import guess_run_context
    rcon = guess_run_context()

    dim = 2

    def boundary_tagger(fvi, el, fn, all_v):
        if el.face_normals[fn][0] > 0:
            return ["dirichlet"]
        else:
            return ["neumann"]

    if dim == 2:
        if rcon.is_head_rank:
            from grudge.mesh.generator import make_disk_mesh
            mesh = make_disk_mesh(r=0.5, boundary_tagger=boundary_tagger)
    elif dim == 3:
        if rcon.is_head_rank:
            from grudge.mesh.generator import make_ball_mesh
            mesh = make_ball_mesh(max_volume=0.001)
    else:
        raise RuntimeError("bad number of dimensions")

    if rcon.is_head_rank:
        print("%d elements" % len(mesh.elements))
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    discr = rcon.make_discretization(mesh_data, order=3,
            debug=["cuda_no_plan"],
            default_scalar_type=numpy.float64)

    if write_output:
        from grudge.visualization import  VtkVisualizer
        vis = VtkVisualizer(discr, rcon, "fld")

    def u0(x, el):
        if la.norm(x) < 0.2:
            return 1
        else:
            return 0

    def coeff(x, el):
        if x[0] < 0:
            return 0.25
        else:
            return 1

    def dirichlet_bc(t, x):
        return 0

    def neumann_bc(t, x):
        return 2

    from grudge.models.diffusion import DiffusionOperator
    op = DiffusionOperator(discr.dimensions,
            #coeff=coeff,
            dirichlet_tag="dirichlet",
            dirichlet_bc=TimeConstantGivenFunction(ConstantGivenFunction(0)),
            neumann_tag="neumann",
            neumann_bc=TimeConstantGivenFunction(ConstantGivenFunction(1))
            )
    u = discr.interpolate_volume_function(u0)

    # diagnostics setup -------------------------------------------------------
    from logpyle import LogManager, \
            add_general_quantities, \
            add_simulation_quantities, \
            add_run_info

    if write_output:
        log_file_name = "heat.dat"
    else:
        log_file_name = None

    logmgr = LogManager(log_file_name, "w", rcon.communicator)
    add_run_info(logmgr)
    add_general_quantities(logmgr)
    add_simulation_quantities(logmgr)
    discr.add_instrumentation(logmgr)

    from grudge.log import LpNorm
    u_getter = lambda: u
    logmgr.add_quantity(LpNorm(u_getter, discr, 1, name="l1_u"))
    logmgr.add_quantity(LpNorm(u_getter, discr, name="l2_u"))

    logmgr.add_watches(["step.max", "t_sim.max", "l2_u", "t_step.max"])

    # timestep loop -----------------------------------------------------------
    from grudge.timestep.runge_kutta import LSRK4TimeStepper, ODE45TimeStepper
    from grudge.timestep.dumka3 import Dumka3TimeStepper
    #stepper = LSRK4TimeStepper()
    stepper = Dumka3TimeStepper(3, rtol=1e-6, rcon=rcon,
            vector_primitive_factory=discr.get_vector_primitive_factory(),
            dtype=discr.default_scalar_type)
    #stepper = ODE45TimeStepper(rtol=1e-6, rcon=rcon,
            #vector_primitive_factory=discr.get_vector_primitive_factory(),
            #dtype=discr.default_scalar_type)
    stepper.add_instrumentation(logmgr)

    rhs = op.bind(discr)
    try:
        next_dt = op.estimate_timestep(discr,
                stepper=LSRK4TimeStepper(), t=0, fields=u)

        from grudge.timestep import times_and_steps
        step_it = times_and_steps(
                final_time=0.1, logmgr=logmgr,
                max_dt_getter=lambda t: next_dt,
                taken_dt_getter=lambda: taken_dt)

        for step, t, dt in step_it:
            if step % 10 == 0 and write_output:
                visf = vis.make_file("fld-%04d" % step)
                vis.add_data(visf, [
                    ("u", discr.convert_volume(u, kind="numpy")),
                    ], time=t, step=step)
                visf.close()

            u, t, taken_dt, next_dt = stepper(u, t, next_dt, rhs)
            #u = stepper(u, t, dt, rhs)

        assert discr.norm(u) < 1
    finally:
        if write_output:
            vis.close()

        logmgr.close()
        discr.close()
예제 #21
0
def main():
    from grudge.backends import guess_run_context
    rcon = guess_run_context(["cuda"])

    if rcon.is_head_rank:
        mesh = make_boxmesh()
        #from grudge.mesh import make_rect_mesh
        #mesh = make_rect_mesh(
        #       boundary_tagger=lambda fvi, el, fn, all_v: ["inflow"])
        mesh_data = rcon.distribute_mesh(mesh)
    else:
        mesh_data = rcon.receive_mesh()

    for order in [3]:
        from pytools import add_python_path_relative_to_script
        add_python_path_relative_to_script("..")

        from gas_dynamics_initials import UniformMachFlow
        box = UniformMachFlow(angle_of_attack=0)

        from grudge.models.gas_dynamics import GasDynamicsOperator
        op = GasDynamicsOperator(dimensions=3,
                gamma=box.gamma, mu=box.mu,
                prandtl=box.prandtl, spec_gas_const=box.spec_gas_const,
                bc_inflow=box, bc_outflow=box, bc_noslip=box,
                inflow_tag="inflow", outflow_tag="outflow", noslip_tag="noslip")

        discr = rcon.make_discretization(mesh_data, order=order,
                        debug=[
                            #"cuda_no_plan",
                            #"cuda_dump_kernels",
                            #"dump_dataflow_graph",
                            #"dump_optemplate_stages",
                            #"dump_dataflow_graph",
                            #"print_op_code",
                            "cuda_no_plan_el_local",
                            ],
                        default_scalar_type=numpy.float32,
                        tune_for=op.sym_operator())

        from grudge.visualization import SiloVisualizer, VtkVisualizer  # noqa
        #vis = VtkVisualizer(discr, rcon, "shearflow-%d" % order)
        vis = SiloVisualizer(discr, rcon)

        fields = box.volume_interpolant(0, discr)

        navierstokes_ex = op.bind(discr)

        max_eigval = [0]

        def rhs(t, q):
            ode_rhs, speed = navierstokes_ex(t, q)
            max_eigval[0] = speed
            return ode_rhs

        rhs(0, fields)

        if rcon.is_head_rank:
            print("---------------------------------------------")
            print("order %d" % order)
            print("---------------------------------------------")
            print("#elements=", len(mesh.elements))

        from grudge.timestep import RK4TimeStepper
        stepper = RK4TimeStepper()

        # diagnostics setup ---------------------------------------------------
        from logpyle import LogManager, add_general_quantities, \
                add_simulation_quantities, add_run_info

        logmgr = LogManager("navierstokes-%d.dat" % order, "w", rcon.communicator)
        add_run_info(logmgr)
        add_general_quantities(logmgr)
        add_simulation_quantities(logmgr)
        discr.add_instrumentation(logmgr)
        stepper.add_instrumentation(logmgr)

        logmgr.add_watches(["step.max", "t_sim.max", "t_step.max"])

        from logpyle import LogQuantity

        class ChangeSinceLastStep(LogQuantity):
            """Records the change of a variable between a time step and the previous
               one"""

            def __init__(self, name="change"):
                LogQuantity.__init__(self, name, "1", "Change since last time step")

                self.old_fields = 0

            def __call__(self):
                result = discr.norm(fields - self.old_fields)
                self.old_fields = fields
                return result

        logmgr.add_quantity(ChangeSinceLastStep())

        # timestep loop -------------------------------------------------------
        try:
            from grudge.timestep import times_and_steps
            step_it = times_and_steps(
                    final_time=200,
                    #max_steps=500,
                    logmgr=logmgr,
                    max_dt_getter=lambda t: op.estimate_timestep(discr,
                        stepper=stepper, t=t, max_eigenvalue=max_eigval[0]))

            for step, t, dt in step_it:
                if step % 200 == 0:
                #if False:
                    visf = vis.make_file("box-%d-%06d" % (order, step))

                    #rhs_fields = rhs(t, fields)

                    vis.add_data(visf,
                            [
                                ("rho", discr.convert_volume(
                                    op.rho(fields), kind="numpy")),
                                ("e", discr.convert_volume(
                                    op.e(fields), kind="numpy")),
                                ("rho_u", discr.convert_volume(
                                    op.rho_u(fields), kind="numpy")),
                                ("u", discr.convert_volume(
                                    op.u(fields), kind="numpy")),

                                # ("rhs_rho", discr.convert_volume(
                                #     op.rho(rhs_fields), kind="numpy")),
                                # ("rhs_e", discr.convert_volume(
                                #     op.e(rhs_fields), kind="numpy")),
                                # ("rhs_rho_u", discr.convert_volume(
                                #     op.rho_u(rhs_fields), kind="numpy")),
                                ],
                            expressions=[
                                ("p", "(0.4)*(e- 0.5*(rho_u*u))"),
                                ],
                            time=t, step=step
                            )
                    visf.close()

                fields = stepper(fields, t, dt, rhs)

        finally:
            vis.close()
            logmgr.save()
            discr.close()