예제 #1
0
def periods_lomb(t, f, e, n_per=3, f0=1.0 / 1000, df=1e-5, fn=1.0 / 50.0, plot=False):

    numf = int((fn - f0) / df)
    freqgrid = np.linspace(f0, fn, numf)
    ftest = 1.0 * f
    P_cand = []
    for i in xrange(n_per):
        psd, res = lombr(t, ftest, e, f0, df, numf, detrend_order=1, nharm=1)
        if plot:
            plt.plot(freqgrid, psd)
            plt.show()

        P_cand.append(1.0 / res["freq"])
        ftest -= res["model"]
    return P_cand
    def old_stuff(self):
        print res2['chi2'], res2['chi0']
        if self.verbose:
            print "New Period is %.8f day" % period
        
        plt.figure(2)
        plt.cla()
        tt=(self.x0/period) % 1.; s=tt.argsort()
        plt.errorbar (tt[s],new_y[s],self.dy_orig[s],fmt='o',c="b")
        plt.plot(tt[s],res2['model'][s],c="r")
        
        f = open("lc.dat","w")
        z = zip(tt[s] - 0.5,new_y[s],self.dy_orig[s])
        for l in z:
            f.write("%f %f %f\n" % l)
        f.close()
        
        f = open("lc0.dat","w")
        z = zip(self.x0,new_y,self.dy_orig)
        for l in z:
            f.write("%f %f %f\n" % l)
        f.close()
        
        
        psdr,res2 = lombr(self.x0,new_y,self.dy0,f0/2.,df,numf)
        period1=1./res2['freq']

        if self.verbose:
            print "New Period is %.8f day" % period1
        
        plt.figure(4)
        plt.cla()
        tt=(self.x0/period1) % 1.; s=tt.argsort()
        plt.errorbar (tt[s],new_y[s],self.dy_orig[s],fmt='o',c="b")
        plt.plot(tt[s],res2['model'][s],c="r")
        print res2['chi2'], res2['chi0']
        f = open("lc2.dat","w")
        z = zip(tt[s] - 0.5,new_y[s],self.dy_orig[s])
        for l in z:
            f.write("%f %f %f\n" % l)
        f.close()
    def _get_pulsational_period(self,min_freq=10.0,doplot=False,max_pulse_period=400.0):
        self.x0 = self.t
        self.y = self.m
        self.dy = self.merr
        self.dy0 = np.sqrt(self.dy**2+self.sys_err**2)
        self.x0 -= self.x0.min()
        self.nepochs = len(self.x0)

        # define the frequency grid
        Xmax = self.x0.max()
        if not  self.fix_initial_period:
            f0 = 1.0/max_pulse_period; df = 0.1/Xmax; fe = min_freq
            numf = int((fe-f0)/df)
        else:
            f0 = 1./self.initial_period
            df = 1e-7
            numf = 1
            
        psdr,res2 = lombr(self.x0,self.y,self.dy0,f0,df,numf,detrend_order=1)
        period=1./res2['freq']
        self.rrlp = period
        if self.verbose:
            print "Initial pulstional Period is %.8f day" % self.rrlp
        
        self.features.update({"p_pulse_initial": self.rrlp})
        
        if self.allow_plotting and doplot:
            try:
                plt.figure(3)
                plt.cla()
                tt=(self.x0/period) % 1.; s=tt.argsort()
                plt.errorbar (tt,self.y,self.dy,fmt='o'); plt.plot(tt[s],res2['model'][s])
                plt.ylim(self.y.max()+0.05,self.y.min()-0.05)
                plt.title("P=%f" % (self.rrlp))
                plt.draw()
            except:
                pass
        return res2
        fp = open(fpath, "w")
        for i in range(len(x)):
            fp.write("%lf %lf %lf\n" % (x[i], y[i], dy[i]))
        fp.close()

    dy0 = sqrt(dy ** 2 + sys_err ** 2)

    Xmax = x.max()
    f0 = 1.0 / Xmax
    df = 0.1 / Xmax
    fe = 10.0
    numf = int((fe - f0) / df)
    freqin = f0 + df * arange(numf, dtype="float64")

    # psd,res = lombr(x,y,dy0,f0,df,numf)
    psd, res = lombr(x, y, dy0, f0, df, numf, detrend_order=1)
    import pdb

    pdb.set_trace()
    print()
    psd1, res1 = lombr(x, y - res["model"], dy0, f0, df, numf, detrend_order=0)
    plot(freqin, psd)

    ###
    """
    The default is to fit 8 harmonics to every initial lomb-scargle peak
    above 6, with 0th order detrending (fitting mean only).  Dan, if you
    think I should, I can put the logic to define the frequency grid in
    the main code and not in a wrapper like this.

    res is a dictionary containing the stuff previously reported by
예제 #5
0
파일: lightcurve.py 프로젝트: stefanv/MLTP
    def lomb_code(self, y, dy, x, sys_err=0.05, srcid=0):
        """ This function is used for final psd and final L-S freqs which are used as features.
        NOTE: lomb_extractor.py..lomb_extractor..extract() also generates psd, but its psd and objects  not used for the final L.S. freqs.

        NOTE: currently (20101120) This is adapted from Nat's run_lomb14.py
        
        """
        ### These are defaults found in run_lomb14.py::run_lomb() definition:
        nharm = 8 # nharm = 4
        num_freq_comps = 3
        do_models = True # 20120720: dstarr changes from False -> True
        tone_control = 5.0 #1.
        ##############

        dy0 = sqrt(dy**2 + sys_err**2)

        wt = 1./dy0**2
        x-=x.min()#needed for lomb() code to run in a fast amount of time

        chi0 = dot(y**2,wt)

        #alias_std = std( x-x.round() )

        Xmax = x.max()
        f0 = 1./Xmax
        df = 0.8/Xmax    # 20120202 :    0.1/Xmax
        fe = 33. #pre 20120126: 10. # 25
        numf = int((fe-f0)/df)
        freqin = f0 + df*arange(numf,dtype='float64') # OK

        ytest=1.*y # makes a copy of the array
        dof = n0 = len(x)
        hh = 1.+arange(nharm)

        out_dict = {}
        #prob = gammaincc(0.5*(n0-1.),0.5*chi0)
        #if (prob>0):
        #    lprob=log(prob)
        #else:
        #    lprob= -gammaln(0.5*(n0-1)) - 0.5*chi0 + 0.5*(n0-3)*log(0.5*chi0)
        #out_dict['sigma_vary'] = lprob2sigma(lprob)

        lambda0_range=[-log10(n0),8] # these numbers "fix" the strange-amplitude effect

        for i in xrange(num_freq_comps):
            if (i==0):
                psd,res = lombr(x,ytest,dy0,f0,df,numf, tone_control=tone_control,
                                lambda0_range=lambda0_range, nharm=nharm, detrend_order=1)                    
                ### I think it still makes sense to set these here, even though freq1 may be replaced by another non-alias freq.  This is because these are parameters that are derived from the first prewhitening application:
                out_dict['lambda'] = res['lambda0'] # 20120206 added
                out_dict['chi0'] = res['chi0']
                out_dict['time0'] = res['time0']
                out_dict['trend'] = res['trend_coef'][1] #temp_b
                out_dict['trend_error'] = res['trend_coef_error'][1] # temp_covar[1][1] # this is the stdev(b)**2
            else:
                psd,res = lombr(x,ytest,dy0,f0,df,numf, tone_control=tone_control,
                                lambda0_range=lambda0_range, nharm=nharm, detrend_order=0)
            ytest -= res['model']
            if (i==0):
                out_dict['varrat'] = dot(ytest**2,wt) / chi0
                #pre20110426: out_dict['cn0'] -= res['trend']*res['time0']
            dof -= n0 - res['nu']
            dstr = "freq%i" % (i + 1)

            if (do_models==True):
                #20120720Commentout#raise  # this needs to be moved below after alias stuff
                out_dict[dstr+'_model'] = res['model']
            out_dict[dstr] = {}
            freq_dict = out_dict[dstr]
            freq_dict["frequency"] = res['freq']
            freq_dict["signif"] = res['signif']
            freq_dict["psd"] = psd # 20110804 added just for self.make_psd_plot() use.
            freq_dict["f0"] = f0
            freq_dict["df"] = df
            freq_dict["numf"] = numf

            freq_dict['harmonics_amplitude'] = res['amplitude']
            freq_dict['harmonics_amplitude_error'] = res['amplitude_error']
            freq_dict['harmonics_rel_phase'] = res['rel_phase']
            freq_dict['harmonics_rel_phase_error'] = res['rel_phase_error']
            freq_dict['harmonics_nharm'] = nharm
            freq_dict['harmonics_time_offset'] = res['time0']
            freq_dict['harmonics_y_offset'] = res['cn0'] # 20110429: disable since it was previously mean subtracted and not useful, and not mean subtracted is avg-mag and essentially survey biased # out_dict['cn0']

        ### Here we check for "1-day" aliases in ASAS / Deboss sources
        dstr_alias = []
        dstr_all = ["freq%i" % (i + 1) for i in range(num_freq_comps)]
        ### 20120223 co:
        #for dstr in dstr_all:
        #    period = 1./out_dict[dstr]['frequency']
        #    if (((period >= 0.93) and (period <= 1.07) and 
        #         (out_dict[dstr]['signif'] < (3.771221/numpy.power(numpy.abs(period - 1.), 0.25) + 3.293027))) or
        #        ((period >= 0.485) and (period <= 0.515) and (out_dict[dstr]['signif'] < 10.0)) or
        #        ((period >= 0.325833333) and (period <= 0.340833333) and (out_dict[dstr]['signif'] < 8.0))):
        #        dstr_alias.append(dstr) # this frequency has a "1 day" alias (or 0.5 or 0.33
        #
        ### 20120212 Joey alias re-analysis:
        alias = [{'per':1., 
                  'p_low':0.92,
                  'p_high':1.08,
                  'alpha_1':8.191855,
                  'alpha_2':-7.976243},
                 {'per':0.5, 
                  'p_low':0.48,
                  'p_high':0.52,
                  'alpha_1':2.438913,
                  'alpha_2':0.9837243},
                 {'per':0.3333333333, 
                  'p_low':0.325,
                  'p_high':0.342,
                  'alpha_1':2.95749,
                  'alpha_2':-4.285432},
                 {'per':0.25, 
                  'p_low':0.245,
                  'p_high':0.255,
                  'alpha_1':1.347657,
                  'alpha_2':2.326338}]

        for dstr in dstr_all:
            period = 1./out_dict[dstr]['frequency']
            for a in alias:
                if ((period >= a['p_low']) and 
                    (period <= a['p_high']) and 
                    (out_dict[dstr]['signif'] < (a['alpha_1']/numpy.power(numpy.abs(period - a['per']), 0.25) + a['alpha_2']))):
                    dstr_alias.append(dstr) # this frequency has a "1 day" alias (or 0.5 or 0.33
                    break # only need to do this once per period, if an alias is found.
        
        out_dict['n_alias'] = len(dstr_alias)
        if 0:
            # 20120624 comment out the code which replaces the aliased freq1 with the next non-aliased one:
            if len(dstr_alias) > 0:
                ### Here we set the next non-alias frequency to freq1, etc:
                dstr_diff = list(set(dstr_all) - set(dstr_alias))
                dstr_diff.sort() # want to ensure that the lowest freq is first
                reorder = []
                for dstr in dstr_all:
                    if len(dstr_diff) > 0:
                        reorder.append(out_dict[dstr_diff.pop(0)])
                    else:
                        reorder.append(out_dict[dstr_alias.pop(0)])

                for i, dstr in enumerate(dstr_all):
                    out_dict[dstr] = reorder[i]
        
        if 0:
            ### Write PSD vs freq .png plots for AllStars web visualization:
            self.make_psd_plot(psd=out_dict['freq1']['psd'], srcid=srcid, freqin=freqin)

        var0 = var(ytest) - median(dy0)**2
        out_dict['sigma0'] = 0.
        if (var0 > 0.):
            out_dict['sigma0'] = sqrt(var0)
        out_dict['nu'] = dof
        out_dict['chi2'] = res['chi2'] #dot(ytest**2,wt)  # 20110512: res['chi2'] is the last freq (freq3)'s chi2, which is pretty similar to the old dot(ytest**2,wt) calculation which uses the signal removed ytest
        #out_dict['alias_std'] = alias_std
        out_dict['freq_binwidth'] = df
        out_dict['freq_searched_min']=min(freqin)
        out_dict['freq_searched_max']=max(freqin)
        out_dict['mad_of_model_residuals'] = median(abs(ytest - median(ytest)))

        ##### This is used for p2p_scatter_2praw feature:
        t_2per_fold = x % (2/out_dict['freq1']['frequency'])
        tups = zip(t_2per_fold, y)#, range(len(t_2per_fold)))
        tups.sort()
        t_2fold, m_2fold = zip(*tups) #So:  m_2fold[30] == y[i_fold[30]]
        m_2fold_array = numpy.array(m_2fold)
        sumsqr_diff_folded = numpy.sum((m_2fold_array[1:] - m_2fold_array[:-1])**2)
        sumsqr_diff_unfold = numpy.sum((y[1:] - y[:-1])**2)
        p2p_scatter_2praw = sumsqr_diff_folded / sumsqr_diff_unfold
        out_dict['p2p_scatter_2praw'] = p2p_scatter_2praw

        mad = numpy.median(numpy.abs(y - median(y)))
        out_dict['p2p_scatter_over_mad'] = numpy.median(numpy.abs(y[1:] - y[:-1])) / mad

        ### eta feature from arXiv 1101.3316 Kim QSO paper:
        out_dict['p2p_ssqr_diff_over_var'] = sumsqr_diff_unfold / ((len(y) - 1) * numpy.var(y))

        t_1per_fold = x % (1./out_dict['freq1']['frequency'])
        tups = zip(t_1per_fold, y)#, range(len(t_2per_fold)))
        tups.sort()
        t_1fold, m_1fold = zip(*tups) #So:  m_1fold[30] == y[i_fold[30]]
        m_1fold_array = numpy.array(m_1fold)
        out_dict['p2p_scatter_pfold_over_mad'] = \
                           numpy.median(numpy.abs(m_1fold_array[1:] - m_1fold_array[:-1])) / mad

        ######################## # # #
        ### This section is used to calculate Dubath (10. Percentile90:2P/P)
        ###     Which requires regenerating a model using 2P where P is the original found period
        ### NOTE: this essentially runs everything a second time, so makes feature
        ###     generation take roughly twice as long.

        model_vals = numpy.zeros(len(y))
        #all_model_vals = numpy.zeros(len(y))
        freq_2p = out_dict['freq1']['frequency'] * 0.5
        ytest_2p=1.*y # makes a copy of the array

        ### So here we force the freq to just 2*freq1_Period
        # - we also do not use linear detrending since we are not searching for freqs, and
        #   we want the resulting model to be smooth when in phase-space.  Detrending would result
        #   in non-smooth model when period folded
        psd,res = lombr(x,ytest_2p,dy0,freq_2p,df,1, tone_control=tone_control,
                            lambda0_range=lambda0_range, nharm=nharm, detrend_order=0)#1)
        model_vals += res['model']
        #all_model_vals += res['model']

        ytest_2p -= res['model']
        for i in xrange(1,num_freq_comps):
            psd,res = lombr(x,ytest_2p,dy0,f0,df,numf, tone_control=tone_control,
                            lambda0_range=lambda0_range, nharm=nharm, detrend_order=0)

            #all_model_vals += res['model']
            ytest_2p -= res['model']

        out_dict['medperc90_2p_p'] = scoreatpercentile(numpy.abs(ytest_2p), 90) / \
                                             scoreatpercentile(numpy.abs(ytest), 90)

        some_feats = self.get_2P_modeled_features(x=x, y=y, freq1_freq=out_dict['freq1']['frequency'], srcid=srcid, ls_dict=out_dict)
        out_dict.update(some_feats)

        ### So the following uses the 2*Period model, and gets a time-sorted, folded t and m:
        ### - NOTE: if this is succesful, I think a lot of other features could characterize the
        ###   shapes of the 2P folded data (not P or 2P dependent).
        ### - the reason we choose 2P is that occasionally for eclipsing
        ###   sources the LS code chooses 0.5 of true period (but never 2x
        ###   the true period).  slopes are not dependent upon the actual
        ###   period so 2P is fine if it gives a high chance of correct fitting.
        ### - NOTE: we only use the model from freq1 because this with its harmonics seems to
        ###   adequately model shapes such as RRLyr skewed sawtooth, multi minima of rvtau
        ###   without getting the scatter from using additional LS found frequencies.


        t_2per_fold = x % (1/freq_2p)
        tups = zip(t_2per_fold, model_vals)
        tups.sort()
        t_2fold, m_2fold = zip(*tups)
        t_2fold_array = numpy.array(t_2fold)
        m_2fold_array = numpy.array(m_2fold)
        slopes = (m_2fold_array[1:] - m_2fold_array[:-1]) / (t_2fold_array[1:] - t_2fold_array[:-1])
        out_dict['fold2P_slope_10percentile'] = scoreatpercentile(slopes,10) # this gets the steepest negative slope?
        out_dict['fold2P_slope_90percentile'] = scoreatpercentile(slopes,90) # this gets the steepest positive slope?

        return out_dict, ytest
예제 #6
0
        fp = open(fpath, 'w')
        for i in range(len(x)):
            fp.write("%lf %lf %lf\n" % (x[i], y[i], dy[i]))
        fp.close()


    dy0 = sqrt(dy**2+sys_err**2)

    Xmax = x.max()
    f0 = 1./Xmax; df = 0.1/Xmax; fe = 10.
    numf = int((fe-f0)/df)
    freqin = f0 + df*arange(numf,dtype='float64')

    #psd,res = lombr(x,y,dy0,f0,df,numf)
    psd,res = lombr(x,y,dy0,f0,df,numf, detrend_order=1)
    import pdb; pdb.set_trace()
    print
    psd1,res1 = lombr(x,y-res['model'],dy0,f0,df,numf, detrend_order=0)
    plot (freqin,psd)

    ###
    """
    The default is to fit 8 harmonics to every initial lomb-scargle peak
    above 6, with 0th order detrending (fitting mean only).  Dan, if you
    think I should, I can put the logic to define the frequency grid in
    the main code and not in a wrapper like this.

    res is a dictionary containing the stuff previously reported by
    pre_whiten: amplitudes, phases, the folded model, etc.
    def gen_orbital_period(self, doplot=False, sig_features=[30,20,15,8,5], min_eclipses=4,
                           eclipse_shorter=False, dynamic=True, choose_largest_numf=False):
        """ 
        """
        try:
            offs,res2 = self.gen_outlier_stat_features(doplot=doplot,sig_features=sig_features)

            ## subtract the model
            new_y = self.y - res2['model']
            
            # make new weights that penalize sources _near_ the model
            dy0 = np.sqrt(self.dy_orig**2+ res2['model_error']**2 + (3*self.sys_err*np.exp(-1.0*abs(offs)/3))**2)  ## this downweights data near the model
            Xmax = self.x0.max()
            #import pdb; pdb.set_trace()
            #print

            if choose_largest_numf:
                f0 = min_eclipses/Xmax
                df = 0.1/Xmax
                fe = res2['freq']*0.98  ## dont go near fundamental freq least we find it again
                numf = int((fe-f0)/df)

                f0_b = res2['freq']*0.98
                fe_b = 10.0
                df_b = 0.1/Xmax
                numf_b = int((fe_b-f0_b)/df_b)

                if numf < numf_b:
                    f0 = f0_b
                    fe = fe_b
                    df = df_b
                    numf = numf_b
            else:
                if not eclipse_shorter:
                    f0 = min_eclipses/Xmax
                    df = 0.1/Xmax
                    fe = res2['freq']*0.98  ## dont go near fundamental freq least we find it again
                    numf = int((fe-f0)/df)
                else:
                    f0 = res2['freq']*0.98
                    fe = 10.0
                    df = 0.1/Xmax
                    numf = int((fe-f0)/df)
                
            freqin = f0 + df*np.arange(numf,dtype='float64')
            periodin = 1/freqin
            
            if self.verbose:
                print "P min, max", min(periodin),max(periodin)

            psdr,res2 = lombr(self.x0,new_y,self.dy0,f0,df,numf)
            period=1./res2['freq']
            if self.verbose:
                print "orb period = %f sigf = %f" % (period,res2['signif'])
            self.last_res = res2
            s = selectp.selectp(self.x0, new_y, self.dy_orig, period, mults=[1.0,2.0], dynamic=dynamic, verbose=self.verbose, srcid=self.srcid)
            s.select()
            
            self.features.update({"best_orb_period": s.rez['best_period'], "best_orb_chi2": \
                s.rez['best_chi2'], 'orb_signif': res2['signif']})
                
            is_suspect = False
            reason = []
            if abs(1.0 - self.features['best_orb_period']) < 0.01 or abs(2.0 - self.features['best_orb_period']) < 0.01 or \
                abs(0.5 - self.features['best_orb_period']) < 0.01:
                ## likely an alias
                is_suspect=True
                reason.append("alias")
            if self.features['best_orb_chi2'] > 10.0 or self.features['orb_signif'] < 4:
                is_suspect=True
                reason.append("low significance")
            if self.features['best_orb_period'] > Xmax/(2*min_eclipses):
                ## probably too long
                is_suspect=True
                reason.append("too long")
            if (0.5 - abs( (self.features['best_orb_period'] / self.features['p_pulse']) % 1.0 - 0.5)) < 0.01:
                ## probably an alias of the pulse period
                is_suspect=True
                reason.append("pulse alias")
            
            self.features.update({'is_suspect': is_suspect, 'suspect_reason': None if not is_suspect else \
                "; ".join(reason)})
            
            
            if doplot:
                try:
                    plt.figure(2)
                    plt.cla()
                    s.plot_best(extra="suspect=%s %s" % (is_suspect,"" if not is_suspect else "(" + ",".join(reason) + ")"))
                    plt.savefig("orb-%s-p=%f-sig=%f.png" % (os.path.basename(self.name),period,res2['signif']))
                    if self.verbose:
                        print "saved...", "org-%s-p=%f.png" % (os.path.basename(self.name),period)
                except:
                    pass
        except:
            return
    def gen_outlier_stat_features(self,doplot=False,sig_features=[30,20,15,8,5],\
        min_freq=10.0,dosave=True,max_pulse_period=400.0):
        """here we generate outlier features and refine the initial pulsational period
            by downweighting those outliers.
        """
        
        res2 = self._get_pulsational_period(doplot=doplot,min_freq=min_freq)
        
        ## now sigclip
        offs = (self.y - res2['model'])/self.dy0
        moffs = np.median(offs)
        offs -= moffs
        
        ## do some feature creation ... find the statistics of major outliers
        for i,s in enumerate(sig_features):
            rr = (np.inf,s) if i == 0 else (sig_features[i-1],s)
            tmp = (offs < rr[0]) & (offs > rr[1])
            nlow = float(tmp.sum())/self.nepochs
            tmp = (offs > -1*rr[0]) & (offs < -1*rr[1])
            nhigh = float(tmp.sum())/self.nepochs
            if self.verbose:
                print "%i: low = %f high = %f  feature-%i-ratio-diff = %f" % (s,nlow,nhigh,s,nhigh - nlow)
            
            self.features.update({"feature-%i-ratio-diff" % s: (nhigh - nlow)*100.0})
            
        tmp = np.where(abs(offs) > 4)
        self.dy_orig = copy.copy(self.merr)
        dy      = copy.copy(self.merr)
        dy[tmp] = np.sqrt(dy[tmp]**2 + res2['model_error'][tmp]**2 + (8.0*(1 - np.exp(-1.0*abs(offs[tmp])/4)))**2)
        dy0 = np.sqrt(dy**2+self.sys_err**2)
        
        #Xmax = self.x0.max()
        #f0 = 1.0/max_pulse_period; df = 0.1/Xmax; fe = min_freq
        #numf = int((fe-f0)/df)
        
        #refine around original period
        ## Josh's original calcs, which fail for sources like: 221205
        ##df = 0.1/self.x0.max()
        ##f0 = res2['freq']*0.95
        ##fe = res2['freq']*1.05
        ##numf = int((fe-f0)/df)

        df = 0.1/self.x0.max()
        f0 = res2['freq']*0.95
        fe = res2['freq']*1.05
        numf = int((fe-f0)/df)
        if numf == 0:
            ## Josh's original calcs, which fail for sources like: 221205
            numf = 100 # kludge / fudge / magic number
            df = (fe-f0) / float(numf)
            
        psdr,res = lombr(self.x0,self.y,dy0,f0,df,numf,detrend_order=1)
        period=1./res['freq']
        
        self.features.update({"p_pulse": period})

        if self.allow_plotting and doplot:
            try:
                tt=(self.x0*res2['freq']) % 1.; s=tt.argsort()
                plt.errorbar (tt[tmp],self.y[tmp],self.dy_orig[tmp],fmt='o',c="r")
                tt=(self.x0*res['freq']) % 1.; s=tt.argsort()
                plt.plot(tt[s],res['model'][s],c="r")
                if dosave:
                    plt.savefig("pulse-%s-p=%f.png" % (os.path.basename(self.name),period))
                    if self.verbose:
                        print "saved...", "pulse-%s-p=%f.png" % (os.path.basename(self.name),period)
                plt.draw()
            except:
                pass
        return offs, res2