예제 #1
0
def get_model(dataset, model_name='ce', cm=None, **kwargs):
    # model architecture
    model = get_model_architecture(dataset, **kwargs)
    optimizer = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
    # loss
    if model_name == 'forward':
        assert cm is not None
        model.compile(loss=forward(cm),
                      optimizer=optimizer,
                      metrics=['accuracy'])
    elif model_name == 'backward':
        assert cm is not None
        model.compile(loss=backward(cm),
                      optimizer=optimizer,
                      metrics=['accuracy'])
    elif model_name == 'boot_hard':
        model.compile(loss=boot_hard,
                      optimizer=optimizer,
                      metrics=['accuracy'])
    elif model_name == 'boot_soft':
        model.compile(loss=boot_soft,
                      optimizer=optimizer,
                      metrics=['accuracy'])
    elif model_name == 'd2l':
        model.compile(loss=lid_paced_loss(),
                      optimizer=optimizer,
                      metrics=['accuracy'])
    elif model_name == 'ce' or model_name == 'coteaching':
        model.compile(loss=cross_entropy,
                      optimizer=optimizer,
                      metrics=['accuracy'])
    elif model_name == 'distillation':
        model.compile(loss=distillation_loss(dataset.num_classes),
                      optimizer=optimizer,
                      metrics=[acc_distillation(dataset.num_classes)])

    model._name = model_name
    return model
예제 #2
0
def train(dataset='mnist',
          model_name='sl',
          batch_size=128,
          epochs=50,
          noise_ratio=0,
          asym=False,
          alpha=1.0,
          beta=1.0):
    """
    Train one model with data augmentation: random padding+cropping and horizontal flip
    :param dataset: 
    :param model_name:
    :param batch_size: 
    :param epochs: 
    :param noise_ratio: 
    :return: 
    """
    print(
        'Dataset: %s, model: %s, batch: %s, epochs: %s, noise ratio: %s%%, asymmetric: %s, alpha: %s, beta: %s'
        % (dataset, model_name, batch_size, epochs, noise_ratio, asym, alpha,
           beta))

    # load data
    X_train, y_train, y_train_clean, X_test, y_test = get_data(
        dataset, noise_ratio, asym=asym, random_shuffle=False)
    n_images = X_train.shape[0]
    image_shape = X_train.shape[1:]
    num_classes = y_train.shape[1]
    print("n_images", n_images, "num_classes", num_classes, "image_shape:",
          image_shape)

    # load model
    model = get_model(dataset,
                      input_tensor=None,
                      input_shape=image_shape,
                      num_classes=num_classes)
    # model.summary()

    if dataset == 'cifar-100':
        optimizer = SGD(lr=0.1, decay=5e-3, momentum=0.9)
    else:
        optimizer = SGD(lr=0.1, decay=1e-4, momentum=0.9)

    # create loss
    if model_name == 'ce':
        loss = cross_entropy
    elif model_name == 'sl':
        loss = symmetric_cross_entropy(alpha, beta)
    elif model_name == 'lsr':
        loss = lsr
    elif model_name == 'joint':
        loss = joint_optimization_loss
    elif model_name == 'gce':
        loss = generalized_cross_entropy
    elif model_name == 'boot_hard':
        loss = boot_hard
    elif model_name == 'boot_soft':
        loss = boot_soft
    elif model_name == 'forward':
        loss = forward(P)
    elif model_name == 'backward':
        loss = backward(P)
    else:
        print("Model %s is unimplemented!" % model_name)
        exit(0)

    # model
    model.compile(loss=loss, optimizer=optimizer, metrics=['accuracy'])

    if asym:
        model_save_file = "model/asym_%s_%s_%s.{epoch:02d}.hdf5" % (
            model_name, dataset, noise_ratio)
    else:
        model_save_file = "model/%s_%s_%s.{epoch:02d}.hdf5" % (
            model_name, dataset, noise_ratio)

    ## do real-time updates using callbakcs
    callbacks = []

    if model_name == 'sl':
        cp_callback = ModelCheckpoint(model_save_file,
                                      monitor='val_loss',
                                      verbose=0,
                                      save_best_only=False,
                                      save_weights_only=True,
                                      period=1)
        callbacks.append(cp_callback)
    else:
        cp_callback = ModelCheckpoint(model_save_file,
                                      monitor='val_loss',
                                      verbose=0,
                                      save_best_only=False,
                                      save_weights_only=True,
                                      period=1)
        callbacks.append(cp_callback)

    # learning rate scheduler if use sgd
    lr_scheduler = get_lr_scheduler(dataset)
    callbacks.append(lr_scheduler)

    callbacks.append(SGDLearningRateTracker(model))

    # acc, loss, lid
    log_callback = LoggerCallback(model, X_train, y_train, y_train_clean,
                                  X_test, y_test, dataset, model_name,
                                  noise_ratio, asym, epochs, alpha, beta)
    callbacks.append(log_callback)

    # data augmentation
    if dataset in ['mnist', 'svhn']:
        datagen = ImageDataGenerator()
    elif dataset in ['cifar-10']:
        datagen = ImageDataGenerator(width_shift_range=0.2,
                                     height_shift_range=0.2,
                                     horizontal_flip=True)
    else:
        datagen = ImageDataGenerator(rotation_range=20,
                                     width_shift_range=0.2,
                                     height_shift_range=0.2,
                                     horizontal_flip=True)
    datagen.fit(X_train)

    # train model
    model.fit_generator(datagen.flow(X_train, y_train, batch_size=batch_size),
                        steps_per_epoch=len(X_train) / batch_size,
                        epochs=epochs,
                        validation_data=(X_test, y_test),
                        verbose=1,
                        callbacks=callbacks)
예제 #3
0
def train(dataset='mnist', model_name='d2l', batch_size=128, epochs=50, noise_ratio=0):
    """
    Train one model with data augmentation: random padding+cropping and horizontal flip
    :param dataset: 
    :param model_name:
    :param batch_size: 
    :param epochs: 
    :param noise_ratio: 
    :return: 
    """
    print('Dataset: %s, model: %s, batch: %s, epochs: %s, noise ratio: %s%%' %
          (dataset, model_name, batch_size, epochs, noise_ratio))

    # load data
    X_train, y_train, X_test, y_test = get_data(dataset, noise_ratio, random_shuffle=True)
    # X_train, y_train, X_val, y_val = validatation_split(X_train, y_train, split=0.1)
    n_images = X_train.shape[0]
    image_shape = X_train.shape[1:]
    num_classes = y_train.shape[1]
    print("n_images", n_images, "num_classes", num_classes, "image_shape:", image_shape)

    # load model
    model = get_model(dataset, input_tensor=None, input_shape=image_shape, num_classes=num_classes)
    # model.summary()

    optimizer = SGD(lr=0.01, decay=1e-4, momentum=0.9)

    # for backward, forward loss
    # suppose the model knows noise ratio
    P = uniform_noise_model_P(num_classes, noise_ratio/100.)
    # create loss
    if model_name == 'forward':
        P = uniform_noise_model_P(num_classes, noise_ratio / 100.)
        loss = forward(P)
    elif model_name == 'backward':
        P = uniform_noise_model_P(num_classes, noise_ratio / 100.)
        loss = backward(P)
    elif model_name == 'boot_hard':
        loss = boot_hard
    elif model_name == 'boot_soft':
        loss = boot_soft
    elif model_name == 'd2l':
        loss = lid_paced_loss()
    else:
        loss = cross_entropy

    # model
    model.compile(
        loss=loss,
        optimizer=optimizer,
        metrics=['accuracy']
    )

    ## do real-time updates using callbakcs
    callbacks = []
    if model_name == 'd2l':
        init_epoch = D2L[dataset]['init_epoch']
        epoch_win = D2L[dataset]['epoch_win']
        d2l_learning = D2LCallback(model, X_train, y_train,
                                            dataset, noise_ratio,
                                            epochs=epochs,
                                            pace_type=model_name,
                                            init_epoch=init_epoch,
                                            epoch_win=epoch_win)

        callbacks.append(d2l_learning)

        cp_callback = ModelCheckpoint("model/%s_%s_%s.hdf5" % (model_name, dataset, noise_ratio),
                                      monitor='val_loss',
                                      verbose=0,
                                      save_best_only=False,
                                      save_weights_only=True,
                                      period=1)
        callbacks.append(cp_callback)

    else:
        cp_callback = ModelCheckpoint("model/%s_%s_%s.hdf5" % (model_name, dataset, noise_ratio),
                                      monitor='val_loss',
                                      verbose=0,
                                      save_best_only=False,
                                      save_weights_only=True,
                                      period=epochs)
        callbacks.append(cp_callback)

    # tensorboard callback
    callbacks.append(TensorBoard(log_dir='./log/log'))

    # learning rate scheduler if use sgd
    lr_scheduler = get_lr_scheduler(dataset)
    callbacks.append(lr_scheduler)

    # acc, loss, lid
    log_callback = LoggerCallback(model, X_train, y_train, X_test, y_test, dataset,
                                  model_name, noise_ratio, epochs)
    callbacks.append(log_callback)

    # data augmentation
    if dataset in ['mnist', 'svhn']:
        datagen = ImageDataGenerator()
    elif dataset in ['cifar-10', 'cifar-100']:
        datagen = ImageDataGenerator(
            width_shift_range=0.2,
            height_shift_range=0.2,
            horizontal_flip=True)
    else:
        datagen = ImageDataGenerator(
            width_shift_range=0.1,
            height_shift_range=0.1,
            horizontal_flip=True)
    datagen.fit(X_train)

    # train model
    model.fit_generator(datagen.flow(X_train, y_train, batch_size=batch_size),
                        steps_per_epoch=len(X_train) / batch_size, epochs=epochs,
                        validation_data=(X_test, y_test),
                        verbose=1,
                        callbacks=callbacks
                        )