def train_variational_autoencoder(
    learning_rate: float,
    epochs: int,
    batch_size: int,
    latent_variables: int = 10,
    print_every: int = 50,
) -> None:
    print(
        f"Training a variational autoencoder for {epochs} epochs with batch size {batch_size}"
    )
    data_loader = DataLoader(batch_size)
    image_loss = CrossEntropy()
    divergence_loss = KLDivergenceStandardNormal()
    encoder_mean = Model([Linear(784, 50), ReLU(), Linear(50, latent_variables)])
    encoder_variance = Model(
        [Linear(784, 50), ReLU(), Linear(50, latent_variables), Exponential()]
    )
    reparameterization = Reparameterization()
    decoder = Model([Linear(latent_variables, 50), ReLU(), Linear(50, 784)])

    for i in range(epochs):
        # One training loop
        training_data = data_loader.get_training_data()

        for j, batch in enumerate(training_data):
            input, target = batch
            # Forward pass
            mean = encoder_mean(input)
            variance = encoder_variance(input)
            z = reparameterization(mean=mean, variance=variance)
            generated_samples = decoder(z)
            # Loss calculation
            divergence_loss_value = divergence_loss(mean, variance)
            generation_loss = image_loss(generated_samples, input)
            if j % print_every == 0:
                print(
                    f"Epoch {i+1}/{epochs}, "
                    f"training iteration {j+1}/{len(training_data)}"
                )
                print(
                    f"KL loss {np.round(divergence_loss_value, 2)}\t"
                    f"Generation loss {np.round(generation_loss, 2)}"
                )

            # Backward pass
            decoder_gradient = image_loss.gradient()
            decoder_gradient = decoder.backward(decoder_gradient)
            decoder_mean_gradient, decoder_variance_gradient = reparameterization.backward(
                decoder_gradient
            )
            encoder_mean_gradient, encoder_variance_gradient = (
                divergence_loss.gradient()
            )
            encoder_mean.backward(decoder_mean_gradient + encoder_mean_gradient)
            encoder_variance.backward(
                decoder_variance_gradient + encoder_variance_gradient
            )
def train_classifier(learning_rate: float,
                     epochs: int,
                     batch_size: int,
                     print_every: int = 50) -> None:
    data_loader = DataLoader(batch_size)

    loss = CrossEntropy()
    model = Model([Linear(784, 50), ReLU(), Linear(50, 10)])

    for i in range(epochs):
        # One training loop
        training_data = data_loader.get_training_data()
        validation_data = data_loader.get_validation_data()
        for j, batch in enumerate(training_data):
            input, target = batch
            y = model(input)
            loss(y, target)
            gradient = loss.gradient()
            model.backward(gradient)
            model.update(learning_rate)
            if j % print_every == 0:
                print(
                    f"Epoch {i+1}/{epochs}, training iteration {j+1}/{len(training_data)}"
                )

        accuracy_values = []
        loss_values = []
        # One validation loop
        for j, batch in enumerate(validation_data):
            input, target = batch
            y = model(input)
            loss_value = loss(y, target)
            accuracy = calculate_accuracy(y, target)
            accuracy_values.append(accuracy)
            loss_values.append(loss_value)

        print(
            f"Epoch {i+1}: loss {np.round(np.average(loss_values), 2)}, accuracy {np.round(np.average(accuracy_values), 2)}"
        )