예제 #1
0
def generate_blobs(nside,
                   nexp=1,
                   exptime=30.,
                   filter1s=['u', 'u', 'g', 'r', 'i', 'z', 'y'],
                   filter2s=['g', 'r', 'r', 'i', 'z', 'y', 'y'],
                   pair_time=22.,
                   camera_rot_limits=[-80., 80.],
                   n_obs_template=3,
                   season=300.,
                   season_start_hour=-4.,
                   season_end_hour=2.,
                   shadow_minutes=60.,
                   max_alt=76.,
                   moon_distance=30.,
                   ignore_obs='DD',
                   m5_weight=6.,
                   footprint_weight=0.6,
                   slewtime_weight=3.,
                   stayfilter_weight=3.,
                   template_weight=12.,
                   footprints=None):
    """
    Generate surveys that take observations in blobs.

    Parameters
    ----------
    nside : int (32)
        The HEALpix nside to use
    nexp : int (1)
        The number of exposures to use in a visit.
    exptime : float (30.)
        The exposure time to use per visit (seconds)
    filter1s : list of str
        The filternames for the first set
    filter2s : list of str
        The filter names for the second in the pair (None if unpaired)
    pair_time : float (22)
        The ideal time between pairs (minutes)
    camera_rot_limits : list of float ([-80., 80.])
        The limits to impose when rotationally dithering the camera (degrees).
    n_obs_template : int (3)
        The number of observations to take every season in each filter
    season : float (300)
        The length of season (i.e., how long before templates expire) (days)
    season_start_hour : float (-4.)
        For weighting how strongly a template image needs to be observed (hours)
    sesason_end_hour : float (2.)
        For weighting how strongly a template image needs to be observed (hours)
    shadow_minutes : float (60.)
        Used to mask regions around zenith (minutes)
    max_alt : float (76.
        The maximium altitude to use when masking zenith (degrees)
    moon_distance : float (30.)
        The mask radius to apply around the moon (degrees)
    ignore_obs : str or list of str ('DD')
        Ignore observations by surveys that include the given substring(s).
    m5_weight : float (3.)
        The weight for the 5-sigma depth difference basis function
    footprint_weight : float (0.3)
        The weight on the survey footprint basis function.
    slewtime_weight : float (3.)
        The weight on the slewtime basis function
    stayfilter_weight : float (3.)
        The weight on basis function that tries to stay avoid filter changes.
    template_weight : float (12.)
        The weight to place on getting image templates every season
    """

    blob_survey_params = {
        'slew_approx': 7.5,
        'filter_change_approx': 140.,
        'read_approx': 2.,
        'min_pair_time': 15.,
        'search_radius': 30.,
        'alt_max': 85.,
        'az_range': 90.,
        'flush_time': 30.,
        'smoothing_kernel': None,
        'nside': nside,
        'seed': 42,
        'dither': True,
        'twilight_scale': True
    }

    surveys = []

    times_needed = [pair_time, pair_time * 2]
    for filtername, filtername2 in zip(filter1s, filter2s):
        detailer_list = []
        detailer_list.append(
            detailers.Camera_rot_detailer(min_rot=np.min(camera_rot_limits),
                                          max_rot=np.max(camera_rot_limits)))
        detailer_list.append(detailers.Close_alt_detailer())
        # List to hold tuples of (basis_function_object, weight)
        bfs = []

        if filtername2 is not None:
            bfs.append(
                (bf.M5_diff_basis_function(filtername=filtername,
                                           nside=nside), m5_weight / 2.))
            bfs.append(
                (bf.M5_diff_basis_function(filtername=filtername2,
                                           nside=nside), m5_weight / 2.))

        else:
            bfs.append((bf.M5_diff_basis_function(filtername=filtername,
                                                  nside=nside), m5_weight))

        if filtername2 is not None:
            bfs.append((bf.Footprint_basis_function(filtername=filtername,
                                                    footprint=footprints,
                                                    out_of_bounds_val=np.nan,
                                                    nside=nside),
                        footprint_weight / 2.))
            bfs.append((bf.Footprint_basis_function(filtername=filtername2,
                                                    footprint=footprints,
                                                    out_of_bounds_val=np.nan,
                                                    nside=nside),
                        footprint_weight / 2.))
        else:
            bfs.append(
                (bf.Footprint_basis_function(filtername=filtername,
                                             footprint=footprints,
                                             out_of_bounds_val=np.nan,
                                             nside=nside), footprint_weight))

        bfs.append((bf.Slewtime_basis_function(filtername=filtername,
                                               nside=nside), slewtime_weight))
        bfs.append((bf.Strict_filter_basis_function(filtername=filtername),
                    stayfilter_weight))

        if filtername2 is not None:
            bfs.append((bf.N_obs_per_year_basis_function(
                filtername=filtername,
                nside=nside,
                footprint=footprints.get_footprint(filtername),
                n_obs=n_obs_template,
                season=season,
                season_start_hour=season_start_hour,
                season_end_hour=season_end_hour), template_weight / 2.))
            bfs.append((bf.N_obs_per_year_basis_function(
                filtername=filtername2,
                nside=nside,
                footprint=footprints.get_footprint(filtername2),
                n_obs=n_obs_template,
                season=season,
                season_start_hour=season_start_hour,
                season_end_hour=season_end_hour), template_weight / 2.))
        else:
            bfs.append((bf.N_obs_per_year_basis_function(
                filtername=filtername,
                nside=nside,
                footprint=footprints.get_footprint(filtername),
                n_obs=n_obs_template,
                season=season,
                season_start_hour=season_start_hour,
                season_end_hour=season_end_hour), template_weight))
        # Masks, give these 0 weight
        bfs.append((bf.Zenith_shadow_mask_basis_function(
            nside=nside,
            shadow_minutes=shadow_minutes,
            max_alt=max_alt,
            penalty=np.nan,
            site='LSST'), 0.))
        bfs.append(
            (bf.Moon_avoidance_basis_function(nside=nside,
                                              moon_distance=moon_distance),
             0.))
        filternames = [
            fn for fn in [filtername, filtername2] if fn is not None
        ]
        bfs.append(
            (bf.Filter_loaded_basis_function(filternames=filternames), 0))
        if filtername2 is None:
            time_needed = times_needed[0]
        else:
            time_needed = times_needed[1]
        bfs.append(
            (bf.Time_to_twilight_basis_function(time_needed=time_needed), 0.))
        bfs.append((bf.Not_twilight_basis_function(), 0.))
        bfs.append((bf.Planet_mask_basis_function(nside=nside), 0.))

        # unpack the basis functions and weights
        weights = [val[1] for val in bfs]
        basis_functions = [val[0] for val in bfs]
        if filtername2 is None:
            survey_name = 'blob, %s' % filtername
        else:
            survey_name = 'blob, %s%s' % (filtername, filtername2)
        if filtername2 is not None:
            detailer_list.append(
                detailers.Take_as_pairs_detailer(filtername=filtername2))
        surveys.append(
            Blob_survey(basis_functions,
                        weights,
                        filtername1=filtername,
                        filtername2=filtername2,
                        exptime=exptime,
                        ideal_pair_time=pair_time,
                        survey_note=survey_name,
                        ignore_obs=ignore_obs,
                        nexp=nexp,
                        detailers=detailer_list,
                        **blob_survey_params))

    return surveys
예제 #2
0
def gen_greedy_surveys(nside=32,
                       nexp=1,
                       exptime=30.,
                       filters=['r', 'i', 'z', 'y'],
                       camera_rot_limits=[-80., 80.],
                       shadow_minutes=60.,
                       max_alt=76.,
                       moon_distance=30.,
                       ignore_obs='DD',
                       m5_weight=3.,
                       footprint_weight=0.3,
                       slewtime_weight=3.,
                       stayfilter_weight=3.,
                       footprints=None):
    """
    Make a quick set of greedy surveys

    This is a convienence function to generate a list of survey objects that can be used with
    lsst.sims.featureScheduler.schedulers.Core_scheduler.
    To ensure we are robust against changes in the sims_featureScheduler codebase, all kwargs are
    explicitly set.

    Parameters
    ----------
    nside : int (32)
        The HEALpix nside to use
    nexp : int (1)
        The number of exposures to use in a visit.
    exptime : float (30.)
        The exposure time to use per visit (seconds)
    filters : list of str (['r', 'i', 'z', 'y'])
        Which filters to generate surveys for.
    camera_rot_limits : list of float ([-80., 80.])
        The limits to impose when rotationally dithering the camera (degrees).
    shadow_minutes : float (60.)
        Used to mask regions around zenith (minutes)
    max_alt : float (76.
        The maximium altitude to use when masking zenith (degrees)
    moon_distance : float (30.)
        The mask radius to apply around the moon (degrees)
    ignore_obs : str or list of str ('DD')
        Ignore observations by surveys that include the given substring(s).
    m5_weight : float (3.)
        The weight for the 5-sigma depth difference basis function
    footprint_weight : float (0.3)
        The weight on the survey footprint basis function.
    slewtime_weight : float (3.)
        The weight on the slewtime basis function
    stayfilter_weight : float (3.)
        The weight on basis function that tries to stay avoid filter changes.
    """
    # Define the extra parameters that are used in the greedy survey. I
    # think these are fairly set, so no need to promote to utility func kwargs
    greed_survey_params = {
        'block_size': 1,
        'smoothing_kernel': None,
        'seed': 42,
        'camera': 'LSST',
        'dither': True,
        'survey_name': 'greedy'
    }

    surveys = []
    detailer = detailers.Camera_rot_detailer(min_rot=np.min(camera_rot_limits),
                                             max_rot=np.max(camera_rot_limits))

    for filtername in filters:
        bfs = []
        bfs.append((bf.M5_diff_basis_function(filtername=filtername,
                                              nside=nside), m5_weight))
        bfs.append(
            (bf.Footprint_basis_function(filtername=filtername,
                                         footprint=footprints,
                                         out_of_bounds_val=np.nan,
                                         nside=nside), footprint_weight))
        bfs.append((bf.Slewtime_basis_function(filtername=filtername,
                                               nside=nside), slewtime_weight))
        bfs.append((bf.Strict_filter_basis_function(filtername=filtername),
                    stayfilter_weight))
        # Masks, give these 0 weight
        bfs.append((bf.Zenith_shadow_mask_basis_function(
            nside=nside, shadow_minutes=shadow_minutes, max_alt=max_alt), 0))
        bfs.append(
            (bf.Moon_avoidance_basis_function(nside=nside,
                                              moon_distance=moon_distance), 0))

        bfs.append(
            (bf.Filter_loaded_basis_function(filternames=filtername), 0))
        bfs.append((bf.Planet_mask_basis_function(nside=nside), 0))

        weights = [val[1] for val in bfs]
        basis_functions = [val[0] for val in bfs]
        surveys.append(
            Greedy_survey(basis_functions,
                          weights,
                          exptime=exptime,
                          filtername=filtername,
                          nside=nside,
                          ignore_obs=ignore_obs,
                          nexp=nexp,
                          detailers=[detailer],
                          **greed_survey_params))

    return surveys
def generate_twilight_neo(nside,
                          night_pattern=None,
                          nexp=1,
                          exptime=1,
                          camera_rot_limits=[-80., 80.],
                          footprint_weight=0.1,
                          slewtime_weight=3.,
                          stayfilter_weight=3.):
    # XXX finish eliminating magic numbers and document this one
    slew_estimate = 4.5
    filters = 'riz'
    survey_name = 'twilight_neo'
    footprint = ecliptic_target(nside=nside)
    footprints = {}
    for filtername in filters:
        footprints[filtername] = footprint

    sum_footprints = 0
    for key in footprints:
        sum_footprints += np.sum(footprints[key])

    surveys = []
    for filtername in filters:
        detailer_list = []
        detailer_list.append(
            detailers.Camera_rot_detailer(min_rot=np.min(camera_rot_limits),
                                          max_rot=np.max(camera_rot_limits)))
        detailer_list.append(detailers.Close_alt_detailer())
        detailer_list.append(
            detailers.Twilight_triple_detailer(slew_estimate=slew_estimate,
                                               n_repeat=3))
        bfs = []

        bfs.append(
            (bf.Footprint_basis_function(filtername=filtername,
                                         footprint=footprints[filtername],
                                         out_of_bounds_val=np.nan,
                                         nside=nside,
                                         all_footprints_sum=sum_footprints),
             footprint_weight))

        bfs.append((bf.Slewtime_basis_function(filtername=filtername,
                                               nside=nside), slewtime_weight))
        bfs.append((bf.Strict_filter_basis_function(filtername=filtername),
                    stayfilter_weight))
        # Need a toward the sun, reward high airmass, with an airmass cutoff basis function.
        bfs.append((bf.Near_sun_twilight_basis_function(nside=nside,
                                                        max_airmass=2.), 0))
        bfs.append((bf.Zenith_shadow_mask_basis_function(nside=nside,
                                                         shadow_minutes=60.,
                                                         max_alt=76.), 0))
        bfs.append((bf.Moon_avoidance_basis_function(nside=nside,
                                                     moon_distance=30.), 0))
        bfs.append(
            (bf.Filter_loaded_basis_function(filternames=filtername), 0))
        bfs.append((bf.Planet_mask_basis_function(nside=nside), 0))
        bfs.append((bf.Sun_alt_limit_basis_function(), 0))
        bfs.append((bf.Time_in_twilight_basis_function(time_needed=5.), 0))
        bfs.append((bf.Night_modulo_basis_function(pattern=night_pattern), 0))
        # unpack the basis functions and weights
        weights = [val[1] for val in bfs]
        basis_functions = [val[0] for val in bfs]

        # Set huge ideal pair time and use the detailer to cut down the list of observations to fit twilight?
        surveys.append(
            Blob_survey(basis_functions,
                        weights,
                        filtername1=filtername,
                        filtername2=None,
                        ideal_pair_time=3.,
                        nside=nside,
                        exptime=exptime,
                        survey_note=survey_name,
                        ignore_obs=['DD', 'greedy', 'blob'],
                        dither=True,
                        nexp=nexp,
                        detailers=detailer_list,
                        az_range=180.,
                        twilight_scale=False))

    return surveys