def main():

    if args.run_number:
        file_list = sorted([
            os.path.join(args.srcdir, f) for f in os.listdir(args.srcdir)
            if (f.endswith('.h5') and args.run_number in f)
        ])
    else:
        file_list = sorted([
            os.path.join(args.srcdir, f) for f in os.listdir(args.srcdir)
            if f.endswith('.h5')
        ])

    if args.noimage:
        keys = get_dataset_keys(file_list[0])
        for k in keys:
            if 'image' in k:
                keys.remove(k)
    else:
        keys = None

    if args.smart:
        smart_merge_h5files(file_list, args.outfile, node_keys=keys)
    else:
        auto_merge_h5files(file_list, args.outfile, nodes_keys=keys)
예제 #2
0
def main():
    std_config = get_standard_config()

    if args.config_file is not None:
        config = replace_config(std_config, read_configuration_file(args.config_file))
    else:
        config = std_config

    print(config['tailcut'])

    geom = CameraGeometry.from_name('LSTCam-002')
    foclen = OpticsDescription.from_name('LST').equivalent_focal_length
    dl1_container = DL1ParametersContainer()
    parameters_to_update = list(HillasParametersContainer().keys())
    parameters_to_update.extend(['wl', 'r', 'leakage', 'n_islands', 'intercept', 'time_gradient'])

    nodes_keys = get_dataset_keys(args.input_file)
    if args.noimage:
        nodes_keys.remove(dl1_images_lstcam_key)

    auto_merge_h5files([args.input_file], args.output_file, nodes_keys=nodes_keys)

    with tables.open_file(args.input_file, mode='r') as input:
        image_table = input.root[dl1_images_lstcam_key]
        with tables.open_file(args.output_file, mode='a') as output:

            params = output.root[dl1_params_lstcam_key].read()

            for ii, row in enumerate(image_table):
                if ii%10000 == 0:
                    print(ii)
                image = row['image']
                pulse_time = row['pulse_time']
                signal_pixels = tailcuts_clean(geom, image, **config['tailcut'])
                if image[signal_pixels].shape[0] > 0:
                    num_islands, island_labels = number_of_islands(geom, signal_pixels)
                    hillas = hillas_parameters(geom[signal_pixels], image[signal_pixels])

                    dl1_container.fill_hillas(hillas)
                    dl1_container.set_timing_features(geom[signal_pixels],
                                                      image[signal_pixels],
                                                      pulse_time[signal_pixels],
                                                      hillas)
                    dl1_container.set_leakage(geom, image, signal_pixels)
                    dl1_container.n_islands = num_islands
                    dl1_container.wl = dl1_container.width / dl1_container.length
                    width = np.rad2deg(np.arctan2(dl1_container.width, foclen))
                    length = np.rad2deg(np.arctan2(dl1_container.length, foclen))
                    dl1_container.width = width.value
                    dl1_container.length = length.value
                    dl1_container.r = np.sqrt(dl1_container.x**2 + dl1_container.y**2)

                    for p in parameters_to_update:
                        params[ii][p] = Quantity(dl1_container[p]).value
                else:
                    for p in parameters_to_update:
                        params[ii][p] = 0

            output.root[dl1_params_lstcam_key][:] = params
def main():

    file_list = [
        args.srcdir + '/' + f for f in os.listdir(args.srcdir)
        if f.endswith('.h5')
    ]

    if args.noimage:
        keys = get_dataset_keys(file_list[0])
        for k in keys:
            if 'image' in k:
                keys.remove(k)
    else:
        keys = None

    if args.smart:
        smart_merge_h5files(file_list, args.outfile, node_keys=keys)
    else:
        auto_merge_h5files(file_list, args.outfile, nodes_keys=keys)
예제 #4
0
def main():

    if args.run_number:
        run = f'Run{args.run_number:05d}'
        file_list = sorted(
            filter(lambda f: run in f,
                   glob(os.path.join(args.srcdir, args.pattern))))
    else:
        file_list = sorted(glob(os.path.join(args.srcdir, args.pattern)))

    if args.noimage:
        keys = get_dataset_keys(file_list[0])
        keys = {k for k in keys if 'image' not in k}
    else:
        keys = None

    if args.smart:
        smart_merge_h5files(file_list, args.outfile, node_keys=keys)
    else:
        auto_merge_h5files(file_list, args.outfile, nodes_keys=keys)
def main():
    args = parser.parse_args()

    if args.run_number:
        run = f'Run{args.run_number:05d}'
        file_list = sorted(filter(
            lambda f: run in f,
            glob(os.path.join(args.input_dir, args.pattern))
        ))
    else:
        file_list = sorted(glob(os.path.join(args.input_dir, args.pattern)))

    if args.no_image:
        keys = get_dataset_keys(file_list[0])
        keys = {k for k in keys if 'image' not in k}
    else:
        keys = None

    auto_merge_h5files(
        file_list,
        args.output_file,
        nodes_keys=keys,
        progress_bar=not args.no_progress
    )
예제 #6
0
def main():
    std_config = get_standard_config()

    log.setLevel(logging.INFO)
    handler = logging.StreamHandler()
    logging.getLogger().addHandler(handler)

    if args.config_file is not None:
        config = replace_config(std_config, read_configuration_file(args.config_file))
    else:
        config = std_config

    log.info(f"Tailcut config used: {config['tailcut']}")

    foclen = OpticsDescription.from_name('LST').equivalent_focal_length
    cam_table = Table.read(args.input_file, path="instrument/telescope/camera/LSTCam")
    camera_geom = CameraGeometry.from_table(cam_table)

    dl1_container = DL1ParametersContainer()
    parameters_to_update = list(HillasParametersContainer().keys())
    parameters_to_update.extend([
        'concentration_cog',
        'concentration_core',
        'concentration_pixel',
        'leakage_intensity_width_1',
        'leakage_intensity_width_2',
        'leakage_pixels_width_1',
        'leakage_pixels_width_2',
        'n_islands',
        'intercept',
        'time_gradient',
        'n_pixels',
        'wl',
        'log_intensity'
    ])

    nodes_keys = get_dataset_keys(args.input_file)
    if args.noimage:
        nodes_keys.remove(dl1_images_lstcam_key)

    auto_merge_h5files([args.input_file], args.output_file, nodes_keys=nodes_keys)

    with tables.open_file(args.input_file, mode='r') as input:
        image_table = input.root[dl1_images_lstcam_key]
        dl1_params_input = input.root[dl1_params_lstcam_key].colnames
        disp_params = {'disp_dx', 'disp_dy', 'disp_norm', 'disp_angle', 'disp_sign'}
        if set(dl1_params_input).intersection(disp_params):
            parameters_to_update.extend(disp_params)

        with tables.open_file(args.output_file, mode='a') as output:
            params = output.root[dl1_params_lstcam_key].read()
            for ii, row in enumerate(image_table):

                dl1_container.reset()

                image = row['image']
                peak_time = row['peak_time']

                signal_pixels = tailcuts_clean(camera_geom, image, **config['tailcut'])

                n_pixels = np.count_nonzero(signal_pixels)
                if n_pixels > 0:
                    num_islands, island_labels = number_of_islands(camera_geom, signal_pixels)
                    n_pixels_on_island = np.bincount(island_labels.astype(np.int))
                    n_pixels_on_island[0] = 0  # first island is no-island and should not be considered
                    max_island_label = np.argmax(n_pixels_on_island)
                    signal_pixels[island_labels != max_island_label] = False

                    hillas = hillas_parameters(camera_geom[signal_pixels], image[signal_pixels])

                    dl1_container.fill_hillas(hillas)
                    dl1_container.set_timing_features(camera_geom[signal_pixels],
                                                      image[signal_pixels],
                                                      peak_time[signal_pixels],
                                                      hillas)

                    dl1_container.set_leakage(camera_geom, image, signal_pixels)
                    dl1_container.set_concentration(camera_geom, image, hillas)
                    dl1_container.n_islands = num_islands
                    dl1_container.wl = dl1_container.width / dl1_container.length
                    dl1_container.n_pixels = n_pixels
                    width = np.rad2deg(np.arctan2(dl1_container.width, foclen))
                    length = np.rad2deg(np.arctan2(dl1_container.length, foclen))
                    dl1_container.width = width
                    dl1_container.length = length
                    dl1_container.log_intensity = np.log10(dl1_container.intensity)

                if set(dl1_params_input).intersection(disp_params):
                    disp_dx, disp_dy, disp_norm, disp_angle, disp_sign = disp(
                        dl1_container['x'].to_value(u.m),
                        dl1_container['y'].to_value(u.m),
                        params['src_x'][ii],
                        params['src_y'][ii]
                    )

                    dl1_container['disp_dx'] = disp_dx
                    dl1_container['disp_dy'] = disp_dy
                    dl1_container['disp_norm'] = disp_norm
                    dl1_container['disp_angle'] = disp_angle
                    dl1_container['disp_sign'] = disp_sign

                for p in parameters_to_update:
                    params[ii][p] = u.Quantity(dl1_container[p]).value

            output.root[dl1_params_lstcam_key][:] = params
def main():
    std_config = get_standard_config()

    if args.config_file is not None:
        config = replace_config(std_config,
                                read_configuration_file(args.config_file))
    else:
        config = std_config

    print(config['tailcut'])

    foclen = OpticsDescription.from_name('LST').equivalent_focal_length
    cam_table = Table.read(args.input_file,
                           path="instrument/telescope/camera/LSTCam")
    camera_geom = CameraGeometry.from_table(cam_table)

    dl1_container = DL1ParametersContainer()
    parameters_to_update = list(HillasParametersContainer().keys())
    parameters_to_update.extend([
        'concentration_cog',
        'concentration_core',
        'concentration_pixel',
        'leakage_intensity_width_1',
        'leakage_intensity_width_2',
        'leakage_pixels_width_1',
        'leakage_pixels_width_2',
        'n_islands',
        'intercept',
        'time_gradient',
        'n_pixels',
        'wl',
        'r',
    ])

    nodes_keys = get_dataset_keys(args.input_file)
    if args.noimage:
        nodes_keys.remove(dl1_images_lstcam_key)

    auto_merge_h5files([args.input_file],
                       args.output_file,
                       nodes_keys=nodes_keys)

    with tables.open_file(args.input_file, mode='r') as input:
        image_table = input.root[dl1_images_lstcam_key]
        with tables.open_file(args.output_file, mode='a') as output:

            params = output.root[dl1_params_lstcam_key].read()

            for ii, row in enumerate(image_table):
                if ii % 10000 == 0:
                    print(ii)
                image = row['image']
                peak_time = row['peak_time']

                signal_pixels = tailcuts_clean(camera_geom, image,
                                               **config['tailcut'])
                n_pixels = np.count_nonzero(signal_pixels)
                if n_pixels > 0:
                    num_islands, island_labels = number_of_islands(
                        camera_geom, signal_pixels)
                    n_pixels_on_island = np.bincount(
                        island_labels.astype(np.int))
                    n_pixels_on_island[
                        0] = 0  # first island is no-island and should not be considered
                    max_island_label = np.argmax(n_pixels_on_island)
                    signal_pixels[island_labels != max_island_label] = False

                    hillas = hillas_parameters(camera_geom[signal_pixels],
                                               image[signal_pixels])

                    dl1_container.fill_hillas(hillas)
                    dl1_container.set_timing_features(
                        camera_geom[signal_pixels], image[signal_pixels],
                        peak_time[signal_pixels], hillas)

                    dl1_container.set_leakage(camera_geom, image,
                                              signal_pixels)
                    dl1_container.set_concentration(camera_geom, image, hillas)
                    dl1_container.n_islands = num_islands
                    dl1_container.wl = dl1_container.width / dl1_container.length
                    dl1_container.n_pixels = n_pixels
                    width = np.rad2deg(np.arctan2(dl1_container.width, foclen))
                    length = np.rad2deg(
                        np.arctan2(dl1_container.length, foclen))
                    dl1_container.width = width
                    dl1_container.length = length
                    dl1_container.r = np.sqrt(dl1_container.x**2 +
                                              dl1_container.y**2)

                else:
                    # for consistency with r0_to_dl1.py:
                    for key in dl1_container.keys():
                        dl1_container[key] = \
                            u.Quantity(0, dl1_container.fields[key].unit)

                    dl1_container.width = u.Quantity(np.nan, u.m)
                    dl1_container.length = u.Quantity(np.nan, u.m)
                    dl1_container.wl = u.Quantity(np.nan, u.m)

            for p in parameters_to_update:
                params[ii][p] = u.Quantity(dl1_container[p]).value

            output.root[dl1_params_lstcam_key][:] = params
예제 #8
0
def main():
    std_config = get_standard_config()

    log.setLevel(logging.INFO)
    handler = logging.StreamHandler()
    logging.getLogger().addHandler(handler)

    if args.config_file is not None:
        config = replace_config(std_config,
                                read_configuration_file(args.config_file))
    else:
        config = std_config

    if args.pedestal_cleaning:
        print("Pedestal cleaning")
        clean_method_name = 'tailcuts_clean_with_pedestal_threshold'
        sigma = config[clean_method_name]['sigma']
        pedestal_thresh = get_threshold_from_dl1_file(args.input_file, sigma)
        cleaning_params = get_cleaning_parameters(config, clean_method_name)
        pic_th, boundary_th, isolated_pixels, min_n_neighbors = cleaning_params
        log.info(
            f"Fraction of pixel cleaning thresholds above picture thr.:"
            f"{np.sum(pedestal_thresh>pic_th) / len(pedestal_thresh):.3f}")
        picture_th = np.clip(pedestal_thresh, pic_th, None)
        log.info(f"Tailcut clean with pedestal threshold config used:"
                 f"{config['tailcuts_clean_with_pedestal_threshold']}")
    else:
        clean_method_name = 'tailcut'
        cleaning_params = get_cleaning_parameters(config, clean_method_name)
        picture_th, boundary_th, isolated_pixels, min_n_neighbors = cleaning_params
        log.info(f"Tailcut config used: {config['tailcut']}")

    use_only_main_island = True
    if "use_only_main_island" in config[clean_method_name]:
        use_only_main_island = config[clean_method_name][
            "use_only_main_island"]

    delta_time = None
    if "delta_time" in config[clean_method_name]:
        delta_time = config[clean_method_name]["delta_time"]

    foclen = OpticsDescription.from_name('LST').equivalent_focal_length
    cam_table = Table.read(args.input_file,
                           path="instrument/telescope/camera/LSTCam")
    camera_geom = CameraGeometry.from_table(cam_table)

    dl1_container = DL1ParametersContainer()
    parameters_to_update = [
        'intensity', 'x', 'y', 'r', 'phi', 'length', 'width', 'psi',
        'skewness', 'kurtosis', 'concentration_cog', 'concentration_core',
        'concentration_pixel', 'leakage_intensity_width_1',
        'leakage_intensity_width_2', 'leakage_pixels_width_1',
        'leakage_pixels_width_2', 'n_islands', 'intercept', 'time_gradient',
        'n_pixels', 'wl', 'log_intensity'
    ]

    nodes_keys = get_dataset_keys(args.input_file)
    if args.noimage:
        nodes_keys.remove(dl1_images_lstcam_key)

    auto_merge_h5files([args.input_file],
                       args.output_file,
                       nodes_keys=nodes_keys)

    with tables.open_file(args.input_file, mode='r') as input:
        image_table = input.root[dl1_images_lstcam_key]
        dl1_params_input = input.root[dl1_params_lstcam_key].colnames
        disp_params = {
            'disp_dx', 'disp_dy', 'disp_norm', 'disp_angle', 'disp_sign'
        }
        if set(dl1_params_input).intersection(disp_params):
            parameters_to_update.extend(disp_params)

        with tables.open_file(args.output_file, mode='a') as output:
            params = output.root[dl1_params_lstcam_key].read()
            for ii, row in enumerate(image_table):

                dl1_container.reset()

                image = row['image']
                peak_time = row['peak_time']

                signal_pixels = tailcuts_clean(camera_geom, image, picture_th,
                                               boundary_th, isolated_pixels,
                                               min_n_neighbors)

                n_pixels = np.count_nonzero(signal_pixels)
                if n_pixels > 0:
                    num_islands, island_labels = number_of_islands(
                        camera_geom, signal_pixels)
                    n_pixels_on_island = np.bincount(
                        island_labels.astype(np.int64))
                    n_pixels_on_island[
                        0] = 0  # first island is no-island and should not be considered
                    max_island_label = np.argmax(n_pixels_on_island)
                    if use_only_main_island:
                        signal_pixels[
                            island_labels != max_island_label] = False

                    # if delta_time has been set, we require at least one
                    # neighbor within delta_time to accept a pixel in the image:
                    if delta_time is not None:
                        cleaned_pixel_times = peak_time
                        # makes sure only signal pixels are used in the time
                        # check:
                        cleaned_pixel_times[~signal_pixels] = np.nan
                        new_mask = apply_time_delta_cleaning(
                            camera_geom, signal_pixels, cleaned_pixel_times, 1,
                            delta_time)
                        signal_pixels = new_mask

                    # count the surviving pixels
                    n_pixels = np.count_nonzero(signal_pixels)

                    if n_pixels > 0:
                        hillas = hillas_parameters(camera_geom[signal_pixels],
                                                   image[signal_pixels])

                        dl1_container.fill_hillas(hillas)
                        dl1_container.set_timing_features(
                            camera_geom[signal_pixels], image[signal_pixels],
                            peak_time[signal_pixels], hillas)

                        dl1_container.set_leakage(camera_geom, image,
                                                  signal_pixels)
                        dl1_container.set_concentration(
                            camera_geom, image, hillas)
                        dl1_container.n_islands = num_islands
                        dl1_container.wl = dl1_container.width / dl1_container.length
                        dl1_container.n_pixels = n_pixels
                        width = np.rad2deg(
                            np.arctan2(dl1_container.width, foclen))
                        length = np.rad2deg(
                            np.arctan2(dl1_container.length, foclen))
                        dl1_container.width = width
                        dl1_container.length = length
                        dl1_container.log_intensity = np.log10(
                            dl1_container.intensity)

                if set(dl1_params_input).intersection(disp_params):
                    disp_dx, disp_dy, disp_norm, disp_angle, disp_sign = disp(
                        dl1_container['x'].to_value(u.m),
                        dl1_container['y'].to_value(u.m), params['src_x'][ii],
                        params['src_y'][ii])

                    dl1_container['disp_dx'] = disp_dx
                    dl1_container['disp_dy'] = disp_dy
                    dl1_container['disp_norm'] = disp_norm
                    dl1_container['disp_angle'] = disp_angle
                    dl1_container['disp_sign'] = disp_sign

                for p in parameters_to_update:
                    params[ii][p] = u.Quantity(dl1_container[p]).value

            output.root[dl1_params_lstcam_key][:] = params