예제 #1
0
    def testBasic(self):
        """Tests shapes are consistent with anchor generation.
        """
        model = RPN(
            self.num_anchors, self.config, debug=True
        )
        # (plus the batch number)
        pretrained_output_shape = (1, 32, 32, 512)
        pretrained_output = tf.placeholder(
            tf.float32, shape=pretrained_output_shape)

        # Estimate image shape from the pretrained output and the anchor stride
        image_shape_val = (
            int(pretrained_output_shape[1] * self.stride),
            int(pretrained_output_shape[2] * self.stride),
        )

        # Use 4 ground truth boxes.
        gt_boxes_shape = (4, 4)
        gt_boxes = tf.placeholder(tf.float32, shape=gt_boxes_shape)
        image_shape_shape = (2,)
        image_shape = tf.placeholder(tf.float32, shape=image_shape_shape)
        # Total anchors depends on the pretrained output shape and the total
        # number of anchors per point.
        total_anchors = (
            pretrained_output_shape[1] * pretrained_output_shape[2] *
            self.num_anchors
        )
        all_anchors_shape = (total_anchors, 4)
        all_anchors = tf.placeholder(tf.float32, shape=all_anchors_shape)
        layers = model(
            pretrained_output, image_shape, all_anchors, gt_boxes=gt_boxes
        )

        with self.test_session() as sess:
            # As in the case of a real session we need to initialize the
            # variables.
            sess.run(tf.global_variables_initializer())
            layers_inst = sess.run(layers, feed_dict={
                # We don't really care about the value of the pretrained output
                # only that has the correct shape.
                pretrained_output: np.random.rand(
                    *pretrained_output_shape
                ),
                # Generate random but valid ground truth boxes.
                gt_boxes: generate_gt_boxes(
                    gt_boxes_shape[0], image_shape_val
                ),
                # Generate anchors from a reference and the shape of the
                # pretrained_output.
                all_anchors: generate_anchors(
                    generate_anchors_reference(
                        self.base_size, self.ratios, self.scales
                    ),
                    16,
                    pretrained_output_shape[1:3]
                ),
                image_shape: image_shape_val,
            })

        # Class score generates 2 values per anchor.
        rpn_cls_score_shape = layers_inst['rpn_cls_score'].shape
        rpn_cls_score_true_shape = (total_anchors, 2)
        self.assertEqual(rpn_cls_score_shape, rpn_cls_score_true_shape)

        # Probs have the same shape as cls scores.
        rpn_cls_prob_shape = layers_inst['rpn_cls_prob'].shape
        self.assertEqual(rpn_cls_prob_shape, rpn_cls_score_true_shape)

        # We check softmax with the sum of the output.
        rpn_cls_prob_sum = layers_inst['rpn_cls_prob'].sum(axis=1)
        self.assertAllClose(rpn_cls_prob_sum, np.ones(total_anchors))

        # Proposals and scores are related to the output of the NMS with
        # limits.
        total_proposals = layers_inst['proposals'].shape[0]
        total_scores = layers_inst['scores'].shape[0]

        # Check we don't get more than top_n proposals.
        self.assertGreaterEqual(
            self.config.proposals.post_nms_top_n, total_proposals
        )

        # Check we get a score for each proposal.
        self.assertEqual(total_proposals, total_scores)

        # Check that we get a regression for each anchor.
        self.assertEqual(
            layers_inst['rpn_bbox_pred'].shape,
            (total_anchors, 4)
        )

        # Check that we get a target for each regression for each anchor.
        self.assertEqual(
            layers_inst['rpn_bbox_target'].shape,
            (total_anchors, 4)
        )

        # Check that we get a target class for each anchor.
        self.assertEqual(
            layers_inst['rpn_cls_target'].shape,
            (total_anchors,)
        )

        # Check that targets are composed of [-1, 0, 1] only.
        rpn_cls_target = layers_inst['rpn_cls_target']
        self.assertEqual(
            tuple(np.sort(np.unique(rpn_cls_target))),
            (-1, 0., 1.)
        )

        batch_cls_target = rpn_cls_target[
            (rpn_cls_target == 0.) | (rpn_cls_target == 1.)
        ]

        # Check that the non negative target class are exactly the size
        # as the minibatch
        self.assertEqual(
            batch_cls_target.shape,
            (self.config.target.minibatch_size, )
        )

        # Check that we get upto foreground_fraction of positive anchors.
        self.assertLessEqual(
            batch_cls_target[batch_cls_target == 1.].shape[0] /
            batch_cls_target.shape[0],
            self.config.target.foreground_fraction
        )
예제 #2
0
파일: rpn_test.py 프로젝트: znreza/luminoth
    def testBasic(self):
        """Tests shapes are consistent with anchor generation.
        """
        model = RPN(self.num_anchors, self.config, debug=True)
        # (plus the batch number)
        pretrained_output_shape = (1, 32, 32, 512)
        pretrained_output = tf.placeholder(tf.float32,
                                           shape=pretrained_output_shape)

        # Estimate image shape from the pretrained output and the anchor stride
        image_shape_val = (
            int(pretrained_output_shape[1] * self.stride),
            int(pretrained_output_shape[2] * self.stride),
        )

        # Use 4 ground truth boxes.
        gt_boxes_shape = (4, 4)
        gt_boxes = tf.placeholder(tf.float32, shape=gt_boxes_shape)
        image_shape_shape = (2, )
        image_shape = tf.placeholder(tf.float32, shape=image_shape_shape)
        # Total anchors depends on the pretrained output shape and the total
        # number of anchors per point.
        total_anchors = (pretrained_output_shape[1] *
                         pretrained_output_shape[2] * self.num_anchors)
        all_anchors_shape = (total_anchors, 4)
        all_anchors = tf.placeholder(tf.float32, shape=all_anchors_shape)
        layers = model(pretrained_output,
                       image_shape,
                       all_anchors,
                       gt_boxes=gt_boxes)

        with self.test_session() as sess:
            # As in the case of a real session we need to initialize the
            # variables.
            sess.run(tf.global_variables_initializer())
            layers_inst = sess.run(
                layers,
                feed_dict={
                    # We don't really care about the value of the pretrained output
                    # only that has the correct shape.
                    pretrained_output:
                    np.random.rand(*pretrained_output_shape),
                    # Generate random but valid ground truth boxes.
                    gt_boxes:
                    generate_gt_boxes(gt_boxes_shape[0], image_shape_val),
                    # Generate anchors from a reference and the shape of the
                    # pretrained_output.
                    all_anchors:
                    generate_anchors(
                        generate_anchors_reference(self.base_size, self.ratios,
                                                   self.scales), 16,
                        pretrained_output_shape[1:3]),
                    image_shape:
                    image_shape_val,
                })

        # Class score generates 2 values per anchor.
        rpn_cls_score_shape = layers_inst['rpn_cls_score'].shape
        rpn_cls_score_true_shape = (total_anchors, 2)
        self.assertEqual(rpn_cls_score_shape, rpn_cls_score_true_shape)

        # Probs have the same shape as cls scores.
        rpn_cls_prob_shape = layers_inst['rpn_cls_prob'].shape
        self.assertEqual(rpn_cls_prob_shape, rpn_cls_score_true_shape)

        # We check softmax with the sum of the output.
        rpn_cls_prob_sum = layers_inst['rpn_cls_prob'].sum(axis=1)
        self.assertAllClose(rpn_cls_prob_sum, np.ones(total_anchors))

        # Proposals and scores are related to the output of the NMS with
        # limits.
        total_proposals = layers_inst['proposals'].shape[0]
        total_scores = layers_inst['scores'].shape[0]

        # Check we don't get more than top_n proposals.
        self.assertGreaterEqual(self.config.proposals.post_nms_top_n,
                                total_proposals)

        # Check we get a score for each proposal.
        self.assertEqual(total_proposals, total_scores)

        # Check that we get a regression for each anchor.
        self.assertEqual(layers_inst['rpn_bbox_pred'].shape,
                         (total_anchors, 4))

        # Check that we get a target for each regression for each anchor.
        self.assertEqual(layers_inst['rpn_bbox_target'].shape,
                         (total_anchors, 4))

        # Check that we get a target class for each anchor.
        self.assertEqual(layers_inst['rpn_cls_target'].shape,
                         (total_anchors, ))

        # Check that targets are composed of [-1, 0, 1] only.
        rpn_cls_target = layers_inst['rpn_cls_target']
        self.assertEqual(tuple(np.sort(np.unique(rpn_cls_target))),
                         (-1, 0., 1.))

        batch_cls_target = rpn_cls_target[(rpn_cls_target == 0.) |
                                          (rpn_cls_target == 1.)]

        # Check that the non negative target class are exactly the size
        # as the minibatch
        self.assertEqual(batch_cls_target.shape,
                         (self.config.target.minibatch_size, ))

        # Check that we get upto foreground_fraction of positive anchors.
        self.assertLessEqual(
            batch_cls_target[batch_cls_target == 1.].shape[0] /
            batch_cls_target.shape[0], self.config.target.foreground_fraction)
예제 #3
0
    def testTypes(self):
        """Tests that return types are the expected ones.
        """
        # We repeat testBasic's setup.
        model = RPN(
            self.num_anchors, self.config, debug=True
        )
        pretrained_output_shape = (1, 32, 32, 512)
        pretrained_output = tf.placeholder(
            tf.float32, shape=pretrained_output_shape)

        image_shape_val = (
            int(pretrained_output_shape[1] * self.stride),
            int(pretrained_output_shape[2] * self.stride),
        )

        gt_boxes_shape = (4, 4)
        gt_boxes = tf.placeholder(tf.float32, shape=gt_boxes_shape)
        image_shape_shape = (2,)
        image_shape = tf.placeholder(tf.float32, shape=image_shape_shape)

        total_anchors = (
            pretrained_output_shape[1] * pretrained_output_shape[2] *
            self.num_anchors
        )
        all_anchors_shape = (total_anchors, 4)
        all_anchors = tf.placeholder(tf.float32, shape=all_anchors_shape)
        layers = model(
            pretrained_output, image_shape, all_anchors, gt_boxes=gt_boxes
        )

        with self.test_session() as sess:
            sess.run(tf.global_variables_initializer())
            layers_inst = sess.run(layers, feed_dict={
                pretrained_output: np.random.rand(
                    *pretrained_output_shape
                ),
                gt_boxes: generate_gt_boxes(
                    gt_boxes_shape[0], image_shape_val
                ),
                all_anchors: generate_anchors(
                    generate_anchors_reference(
                        self.base_size, self.ratios, self.scales
                    ),
                    16,
                    pretrained_output_shape[1:3]
                ),
                image_shape: image_shape_val,
            })

        # Assertions
        proposals = layers_inst['proposals']
        scores = layers_inst['scores']
        rpn_cls_prob = layers_inst['rpn_cls_prob']
        rpn_cls_score = layers_inst['rpn_cls_score']
        rpn_bbox_pred = layers_inst['rpn_bbox_pred']
        rpn_cls_target = layers_inst['rpn_cls_target']
        rpn_bbox_target = layers_inst['rpn_bbox_target']
        # Everything should have dtype=tf.float32
        self.assertAllEqual(
            # We have 7 values we want to compare to tf.float32.
            [tf.float32] * 7,
            [
                proposals.dtype, scores.dtype, rpn_cls_prob.dtype,
                rpn_cls_score.dtype, rpn_bbox_pred.dtype,
                rpn_cls_target.dtype, rpn_bbox_target.dtype,
            ]

        )
예제 #4
0
파일: rpn_test.py 프로젝트: znreza/luminoth
    def testTypes(self):
        """Tests that return types are the expected ones.
        """
        # We repeat testBasic's setup.
        model = RPN(self.num_anchors, self.config, debug=True)
        pretrained_output_shape = (1, 32, 32, 512)
        pretrained_output = tf.placeholder(tf.float32,
                                           shape=pretrained_output_shape)

        image_shape_val = (
            int(pretrained_output_shape[1] * self.stride),
            int(pretrained_output_shape[2] * self.stride),
        )

        gt_boxes_shape = (4, 4)
        gt_boxes = tf.placeholder(tf.float32, shape=gt_boxes_shape)
        image_shape_shape = (2, )
        image_shape = tf.placeholder(tf.float32, shape=image_shape_shape)

        total_anchors = (pretrained_output_shape[1] *
                         pretrained_output_shape[2] * self.num_anchors)
        all_anchors_shape = (total_anchors, 4)
        all_anchors = tf.placeholder(tf.float32, shape=all_anchors_shape)
        layers = model(pretrained_output,
                       image_shape,
                       all_anchors,
                       gt_boxes=gt_boxes)

        with self.test_session() as sess:
            sess.run(tf.global_variables_initializer())
            layers_inst = sess.run(
                layers,
                feed_dict={
                    pretrained_output:
                    np.random.rand(*pretrained_output_shape),
                    gt_boxes:
                    generate_gt_boxes(gt_boxes_shape[0], image_shape_val),
                    all_anchors:
                    generate_anchors(
                        generate_anchors_reference(self.base_size, self.ratios,
                                                   self.scales), 16,
                        pretrained_output_shape[1:3]),
                    image_shape:
                    image_shape_val,
                })

        # Assertions
        proposals = layers_inst['proposals']
        scores = layers_inst['scores']
        rpn_cls_prob = layers_inst['rpn_cls_prob']
        rpn_cls_score = layers_inst['rpn_cls_score']
        rpn_bbox_pred = layers_inst['rpn_bbox_pred']
        rpn_cls_target = layers_inst['rpn_cls_target']
        rpn_bbox_target = layers_inst['rpn_bbox_target']
        # Everything should have dtype=tf.float32
        self.assertAllEqual(
            # We have 7 values we want to compare to tf.float32.
            [tf.float32] * 7,
            [
                proposals.dtype,
                scores.dtype,
                rpn_cls_prob.dtype,
                rpn_cls_score.dtype,
                rpn_bbox_pred.dtype,
                rpn_cls_target.dtype,
                rpn_bbox_target.dtype,
            ])