def test_two_parameter_maximization(self): optimizer = ScipyOptimizers(max_iter=200, method='L-BFGS-B', scaling_factor=1.0, pgtol=1.0e-11) fom = lambda params: np.sin(np.pi * params[0]) * np.sin(np.pi * params[ 1]) jac = lambda params: np.pi * np.array([ np.cos(np.pi * params[0]) * np.sin(np.pi * params[1]), np.sin(np.pi * params[0]) * np.cos(np.pi * params[1]) ]) start = np.array([1.0e-5, 1.0 - 1e-5]) bounds = np.array([(self.machine_eps, 1.0 - self.machine_eps), (self.machine_eps, 1.0 - self.machine_eps)]) def plot_fun(): pass optimizer.initialize(start_params=start, callable_fom=fom, callable_jac=jac, bounds=bounds, plotting_function=plot_fun) results = optimizer.run() self.assertTrue(results.success) self.assertAlmostEqual(results.x.size, 2) self.assertAlmostEqual(results.x[0], 0.5, 11) self.assertAlmostEqual(results.x[1], 0.5, 11) self.assertAlmostEqual(results.fun, 1.0, 11) self.assertLessEqual(results.nit, 3) self.assertLessEqual(results.nfev, 15)
def test_single_parameter_maximization_with_scaling(self): span = 1.0e-9 optimizer = ScipyOptimizers(max_iter=200, method='L-BFGS-B', scaling_factor=1.0 / span, pgtol=1.0e-11) fom = lambda param: -1.0 / np.sin(np.pi / span * param[0]) jac = lambda param: np.pi * np.cos(np.pi / span * param[0]) / np.power( np.sin(np.pi / span * param[0]), 2) / span start = np.array(1.0e-6) * span bounds = np.array([(self.machine_eps, 1.0 - self.machine_eps)]) * span def plot_fun(): pass optimizer.initialize(start_params=start, callable_fom=fom, callable_jac=jac, bounds=bounds, plotting_function=plot_fun) results = optimizer.run() self.assertTrue(results.success) self.assertAlmostEqual(results.x.size, 1) self.assertAlmostEqual(results.x[0], 0.5 * span, 11) self.assertAlmostEqual(results.fun, -1.0, 11) self.assertLessEqual(results.nit, 31) self.assertLessEqual(results.nfev, 46)
def setUp(self): # Base simulation project files self.base_TE_sim = os.path.join( self.file_dir, 'co_optimization_parallel_plate_waveguide_TE_base.fsp') self.base_TM_sim = os.path.join( self.file_dir, 'co_optimization_parallel_plate_waveguide_TM_base.fsp') # Simulation bandwidth self.wavelengths = Wavelengths(start=1500e-9, stop=1600e-9, points=12) # Polygon defining a rectangle that can grow or shrink along the y-axis to fill the gap self.mesh_del = 10.0e-9 # must be kept in sych with self.base_script initial_points_y = np.array( [1.75 * self.mesh_del, 0.01 * self.mesh_del]) def wall(param=initial_points_y): assert param.size == 2, "walls defined by two points." self.wg_gap = 10.0 * self.mesh_del # must be kept in sych points_x = 0.5 * np.array( [-self.wg_gap, self.wg_gap, self.wg_gap, -self.wg_gap]) points_y = np.array([-param[0], -param[1], param[1], param[0]]) polygon_points = [(x, y) for x, y in zip(points_x, points_y)] return np.array(polygon_points) self.wg_width = 50.0 * self.mesh_del # must be kept in synch bounds = [(0.0, self.wg_width / 2.0)] * initial_points_y.size self.geometry = FunctionDefinedPolygon( func=wall, initial_params=initial_points_y, bounds=bounds, z=0.0, # must be kept in sych depth=self.wg_width, eps_out=Material(base_epsilon=1.0**2, name='<Object defined dielectric>', mesh_order=2), # must be kept in synch eps_in=Material(base_epsilon=4.0**2, name='<Object defined dielectric>', mesh_order=1), # must be kept in sych edge_precision=50, dx=1.0e-10) # Figure of merit self.fom = ModeMatch( monitor_name='fom', # must be kept in sych mode_number=1, # must be kept in sych direction='Forward', multi_freq_src=True, target_T_fwd=lambda wl: np.ones(wl.size), norm_p=1) # Scipy optimizer self.optimizer = ScipyOptimizers(max_iter=5, method='L-BFGS-B', scaling_factor=1.0e7, pgtol=1.0e-5, ftol=1.0e-12, target_fom=0.0, scale_initial_gradient_to=None)
def runSim(params, eps_bg, eps_wg, x_pos, y_pos, size_x, filter_R, beta_start=1): ######## DEFINE A 2D TOPOLOGY OPTIMIZATION REGION ######## geometry = TopologyOptimization2D(params=params, eps_min=eps_bg, eps_max=eps_wg, x=x_pos, y=y_pos, z=0, filter_R=filter_R, beta=beta_start) ######## DEFINE FIGURE OF MERIT ######## # The base simulation script defines a field monitor named 'fom' at the point where we want to modematch to the fundamental TE mode fom = ModeMatch(monitor_name='fom', mode_number='Fundamental TE mode', direction='Forward', norm_p=2) ######## DEFINE OPTIMIZATION ALGORITHM ######## optimizer = ScipyOptimizers(max_iter=50, method='L-BFGS-B', scaling_factor=1, pgtol=1e-6, ftol=1e-4, target_fom=0.5, scale_initial_gradient_to=0.25) ######## LOAD TEMPLATE SCRIPT AND SUBSTITUTE PARAMETERS ######## script = load_from_lsf( os.path.join(CONFIG['root'], 'examples/Ysplitter/splitter_base_2D_TE_topology.lsf')) script = script.replace('opt_size_x=3.5e-6', 'opt_size_x={:1.6g}'.format(size_x)) wavelengths = Wavelengths(start=1450e-9, stop=1650e-9, points=11) opt = Optimization(base_script=script, wavelengths=wavelengths, fom=fom, geometry=geometry, optimizer=optimizer, use_deps=False, hide_fdtd_cad=True, plot_history=False, store_all_simulations=False) ######## RUN THE OPTIMIZER ######## opt.run()
def setUp(self): # Base simulation script self.base_script = load_from_lsf(os.path.join(self.file_dir, 'optimization_waveguide_filter_TM_2D_base.lsf')) # Simulation bandwidth self.wavelengths = Wavelengths(start = 1300e-9, stop = 1800e-9, points = 41) # Polygons to form the two gaps self.mesh_del = 20.0e-9; # must be kept in sych with self.base_script initial_param = 10.0 * np.array([self.mesh_del]) def rectangle(param = initial_param, offset = 0.0): assert param.size == 1, "rectangle grows along a single dimension." wg_width = 35.0 * self.mesh_del # must be kept in synch points_x = 0.5 * np.array([-wg_width, wg_width, wg_width, -wg_width]) points_y = 0.5 * np.array([-param, -param, param, param]) + offset polygon_points = [(x, y) for x, y in zip(points_x, points_y)] return np.array(polygon_points) bounds = [(self.mesh_del, 20.0 * self.mesh_del)] z = 0.0 # must be kept in sych depth = 200.0 * self.mesh_del # must be kept in sych eps_in = Material(base_epsilon = 1.44 ** 2, mesh_order = 1) # must be kept in sych with eps_out = Material(base_epsilon = 2.8 ** 2, mesh_order = 1) # must be kept in sych with edge_precision = 25 dx = 1.0e-10 self.geometry = (FunctionDefinedPolygon(func = lambda param: rectangle(param[0], 2.0 * param[0]), initial_params = initial_param, bounds = bounds, z = z, depth = depth, eps_out = eps_out, eps_in = eps_in, edge_precision = edge_precision, dx = dx) * FunctionDefinedPolygon(func = lambda param: rectangle(param[0],-2.0 * param[0]), initial_params = initial_param, bounds = bounds, z = z, depth = depth, eps_out = eps_out, eps_in = eps_in, edge_precision = edge_precision, dx = dx)) # Broadband figure of merit target_T_fwd = lambda wl: 0.3 + 0.65*np.power(np.sin(np.pi * (wl - wl.min()) / (wl.max() - wl.min())), 6) self.fom = ModeMatch(monitor_name = 'FOM', # must be kept in sych mode_number = 1, # must be kept in sych direction = 'Backward', multi_freq_src = True, target_T_fwd = target_T_fwd, norm_p = 1) # Scipy optimzier self.optimizer = ScipyOptimizers(max_iter = 10, method = 'L-BFGS-B', scaling_factor = 1.0e7, pgtol = 5.6e-3)
def __init__(self, max_iter, method, scaling_factor, pgtol, ftol, wavelength_start, wavelength_stop, wavelength_points, build_simulation, fom, geometry, hide_fdtd_cad): # The optimizer must be generated anew at each iteration self._new_local_optimizer = ScipyOptimizers( max_iter=max_iter, method=method, scaling_factor=scaling_factor, ftol=ftol, pgtol=pgtol) self._wl = Wavelengths(start=wavelength_start, stop=wavelength_stop, points=wavelength_points) self._optimization = Optimization(base_script=build_simulation, wavelengths=self._wl, fom=fom, geometry=geometry, optimizer=self._new_local_optimizer, hide_fdtd_cad=hide_fdtd_cad, use_deps=True)
depth=wg_height, eps_out=1.0**2, eps_in=3.47668**2, edge_precision=5, dx=1.0e-5) ######## DEFINE FIGURE OF MERIT ######## fom = ModeMatch(monitor_name='fom', mode_number=3, direction='Backward', target_T_fwd=lambda wl: 0.5 * np.ones(wl.size), norm_p=1) ######## DEFINE OPTIMIZATION ALGORITHM ######## optimizer = ScipyOptimizers(max_iter=200, method='L-BFGS-B', scaling_factor=1.0, pgtol=1.0e-4) ######## PUT EVERYTHING TOGETHER ######## opt = Optimization(base_script=base_sim, wavelengths=wavelengths, fom=fom, geometry=geometry, optimizer=optimizer, hide_fdtd_cad=False, use_deps=True) ######## RUN THE OPTIMIZER ######## opt.run()
eps_out=1.44**2, eps_in='Si (Silicon) - Palik', bounds=bounds, depth=220e-9, edge_precision=5) # We must define the permittivities of the material making the optimizable # geometry and of that surrounding it. Since this is a 2D simulation, the depth has no importance. # edge_precision defines the discretization of the edges forming the optimizable polygon. It should be set such # that there are at least a few points per mesh cell. An effective index of 2.8 is user to simulate a 2D slab of # 220 nm thick ######## DEFINE FIGURE OF MERIT ######## fom = ModeMatch(modeorder=1, monitor_name='fom', wavelength=1550e-9) # The base simulation script defines a field monitor named 'fom' at the point where we want to # modematch to the 3rd order mode (fundamental TE mode) ######## DEFINE OPTIMIZATION ALGORITHM ######## optimizer = ScipyOptimizers(max_iter=20, method='L-BFGS-B', scaling_factor=1e6) # This will run Scipy's implementation of the L-BFGS-B algoithm for at least 40 iterations. Since the variables are on the # order of 1e-6, we scale them up to be on the order of 1 ######## PUT EVERYTHING TOGETHER ######## opt = Optimization(base_script=script, fom=fom, geometry=geometry, optimizer=optimizer) ######## RUN THE OPTIMIZER ######## opt.run()
def runGratingOptimization(bandwidth_in_nm, etch_depth_shallow, etch_depth_deep, n_grates, initial_params = None): ### Yet another parametrization which allows to enforce minimum feature size when the optimizer only supports box constraints ### params = [x0, a1, b1, ..., aN] if initial_params is None: params = np.zeros(4*n_grates) for i in range(n_grates): params[i*4] = 0.2 #< Width up params[i*4+1] = 0.4*(i/n_grates) #< Width of the shallow etch params[i*4+2] = 0.1 #< Width up params[i*4+3] = 0.4*(i/n_grates) #< Width of the deep etch params[0] = 0 #< Overwrite the first since it has a special meaning: Start of the grating at 0um else: params = initial_params bounds = [(0, 1)]*(4*n_grates) bounds[0] = (-3,3) def grating_params_pos(params, output_waveguide_length = 0.5e-6, height = 220e-9, y0 = 0): x_begin = -3e-6 y3 = y0+height y2 = y3-etch_depth_deep y1 = y3-etch_depth_shallow x0 = params[0]*1e-6 #< First parameter is the starting position verts = np.array( [ [x_begin,y0],[x_begin,y3],[x0,y3],[x0,y1] ] ) ## Iterate over all but the last for i in range(n_grates-1): x1 = x0 + params[i*4+1]*1e-6 #< Width of the deep etch x2 = x1 + params[i*4+2]*1e-6 #< Width up x3 = x2 + params[i*4+3]*1e-6 #< Width of the shallow etch x4 = x3 + params[i*4+4]*1e-6 #< Width up verts = np.concatenate((verts,[[x1,y1],[x1,y3],[x2,y3],[x2,y2],[x3,y2],[x3,y3],[x4,y3],[x4,y1]]),axis=0) x0 = x4 x1 = x0 + params[(n_grates-1)*4+1]*1e-6 #< Width of the deep etch x2 = x1 + params[(n_grates-1)*4+2]*1e-6 #< Width up x3 = x2 + params[(n_grates-1)*4+3]*1e-6 #< Width of the shallow etch x_end = x3+output_waveguide_length verts = np.concatenate((verts,[[x1,y1],[x1,y3],[x2,y3],[x2,y2],[x3,y2],[x3,y3],[x_end,y3],[x_end,y0]]),axis=0) return verts geometry = FunctionDefinedPolygon(func = grating_params_pos, initial_params = params, bounds = bounds, z = 0.0, depth = 220e-9, eps_out = 1.44 ** 2, eps_in = 3.47668 ** 2, edge_precision = 5, dx = 1e-3) ######## DEFINE FIGURE OF MERIT ######## fom = ModeMatch(monitor_name = 'fom', mode_number = 1, direction = 'Backward', target_T_fwd = lambda wl: np.ones(wl.size), norm_p = 1) ######## DEFINE OPTIMIZATION ALGORITHM ######## optimizer = ScipyOptimizers(max_iter = 250, method = 'L-BFGS-B', scaling_factor = 1, pgtol = 1e-6) #SLSQP ######## DEFINE BASE SIMULATION ######## base_script = load_from_lsf(os.path.join(os.path.dirname(__file__), 'grating_coupler_2D_2etch.lsf')) ######## PUT EVERYTHING TOGETHER ######## lambda_start = 1550 - bandwidth_in_nm/2 lambda_end = 1550 + bandwidth_in_nm/2 lambda_pts = int(bandwidth_in_nm/10)+1 wavelengths = Wavelengths(start = lambda_start*1e-9, stop = lambda_end*1e-9, points = lambda_pts) opt = Optimization(base_script = base_script, wavelengths = wavelengths, fom = fom, geometry = geometry, optimizer = optimizer, hide_fdtd_cad = True, use_deps = True) ######## RUN THE OPTIMIZER ######## opt.run()
dx=0.01e-9) ######## DEFINE FIGURE OF MERIT ######## # The base simulation script defines a field monitor named 'fom' at the point where we want to modematch to the 3rd mode (fundamental TE mode). fom = ModeMatch(monitor_name='fom', mode_number=2, direction='Forward', multi_freq_src=False, target_T_fwd=lambda wl: np.ones(wl.size), norm_p=1) ######## DEFINE OPTIMIZATION ALGORITHM ######## # This will run Scipy's implementation of the L-BFGS-B algoithm for at least 40 iterations. Since the variables are on the # order of 1e-6, thery are scale up to be on the order of 1. optimizer = ScipyOptimizers(max_iter=500, method='L-BFGS-B', scaling_factor=1e6, pgtol=1e-9) ######## PUT EVERYTHING TOGETHER ######## opt = Optimization(base_script=base_script, wavelengths=wavelengths, fom=fom, geometry=geometry, optimizer=optimizer, hide_fdtd_cad=False, use_deps=True) ######## RUN THE OPTIMIZER ######## opt.run()
def runGratingOptimization(bandwidth_in_nm, etch_depth, n_grates, params): bounds = [(0.1, 1)] * 4 bounds[0] = (-3, 3) #< Starting position bounds[1] = (0, 0.1) #< Scaling parameter R bounds[2] = (1.5, 3) #< Parameter a bounds[3] = (0, 2) #< Parameter b def grating_params_pos(params, output_waveguide_length=0.5e-6, height=220e-9, y0=0): x_begin = -3e-6 y3 = y0 + height y1 = y3 - etch_depth x_start = params[0] * 1e-6 #< First parameter is the starting position x0 = x_start R = params[1] * 1e6 #< second parameter (unit is 1/um) a = params[2] #< Third parameter (dim-less) b = params[3] #< Fourth parameter (dim-less) verts = np.array([[x_begin, y0], [x_begin, y3], [x0, y3], [x0, y1]]) lambda_c = 1.55e-6 F0 = 0.95 ## Iterate over all but the last for i in range(n_grates - 1): F = F0 - R * (x0 - x_start) Lambda = lambda_c / (a + F * b) x1 = x0 + (1 - F) * Lambda #< Width of the etched region x2 = x0 + Lambda #< Rest of cell verts = np.concatenate( (verts, [[x1, y1], [x1, y3], [x2, y3], [x2, y1]]), axis=0) x0 = x2 F = F0 - R * (x0 - x_start) Lambda = lambda_c / (a + F * b) x1 = x0 + (1 - F) * Lambda #< Width of the etched region x_end = x1 + output_waveguide_length verts = np.concatenate( (verts, [[x1, y1], [x1, y3], [x_end, y3], [x_end, y0]]), axis=0) return verts geometry = FunctionDefinedPolygon(func=grating_params_pos, initial_params=params, bounds=bounds, z=0.0, depth=110e-9, eps_out=1.44**2, eps_in=3.47668**2, edge_precision=5, dx=1e-3) ######## DEFINE FIGURE OF MERIT ######## fom = ModeMatch(monitor_name='fom', mode_number=1, direction='Backward', target_T_fwd=lambda wl: np.ones(wl.size), norm_p=1) ######## DEFINE OPTIMIZATION ALGORITHM ######## optimizer = ScipyOptimizers(max_iter=25, method='L-BFGS-B', scaling_factor=1, pgtol=1e-6) ######## DEFINE BASE SIMULATION ######## base_script = load_from_lsf( os.path.join(os.path.dirname(__file__), 'grating_coupler_2D_2etch.lsf')) ######## PUT EVERYTHING TOGETHER ######## lambda_start = 1550 - bandwidth_in_nm / 2 lambda_end = 1550 + bandwidth_in_nm / 2 lambda_pts = int(bandwidth_in_nm / 10) + 1 wavelengths = Wavelengths(start=lambda_start * 1e-9, stop=lambda_end * 1e-9, points=lambda_pts) opt = Optimization(base_script=base_script, wavelengths=wavelengths, fom=fom, geometry=geometry, optimizer=optimizer, hide_fdtd_cad=True, use_deps=True) ######## RUN THE OPTIMIZER ######## opt.run()
if __name__ == '__main__': import numpy as np from lumopt.geometries.polygon import function_defined_Polygon, cross from lumopt.optimizers.generic_optimizers import ScipyOptimizers from lumopt.figures_of_merit.modematch import ModeMatch from lumopt.utilities.load_lumerical_scripts import load_from_lsf import os import matplotlib.pyplot as plt from lumopt import CONFIG base_script = load_from_lsf( os.path.join(CONFIG['root'], 'examples/crossing/crossing_base_TE_modematch_2D.lsf')) fom = ModeMatch(modeorder=2) optimizer = ScipyOptimizers(max_iter=20) # optimizer=FixedStepGradientDescent(max_dx=20e-9,max_iter=100) bounds = [(0.2e-6, 1e-6)] * 10 geometry = function_defined_Polygon(func=cross, initial_params=np.linspace( 0.25e-6, 0.6e-6, 10), eps_out='SiO2 (Glass) - Palik', eps_in=2.8**2, bounds=bounds, depth=220e-9, edge_precision=5) opt = Optimization(base_script=base_script, fom=fom, geometry=geometry, optimizer=optimizer)
interpolator = sp.interpolate.interp1d(points_x, points_y, kind='cubic') polygon_points_y = [max(min(point,1e-6),-1e-6) for point in interpolator(polygon_points_x)] polygon_points_up = [(x, y) for x, y in zip(polygon_points_x, polygon_points_y)] polygon_points_down = [(x, -y) for x, y in zip(polygon_points_x, polygon_points_y)] polygon_points = np.array(polygon_points_up[::-1] + polygon_points_down) return polygon_points bounds = [(0.2e-6, 1e-6)]*10 # final value from splitter_opt_2D.py optimization initial_params = np.array([2.44788514e-07, 2.65915795e-07, 2.68748023e-07, 4.42233947e-07, 6.61232152e-07, 6.47561406e-07, 6.91473099e-07, 6.17511522e-07, 6.70669074e-07, 5.86141086e-07]) geometry_1 = FunctionDefinedPolygon(func = taper_splitter_1, initial_params = initial_params, bounds = bounds, z = 0.0, depth = 220e-9, eps_out = 1.44 ** 2, eps_in = 2.8 ** 2, edge_precision = 5, dx = 0.1e-9) geometry_2 = FunctionDefinedPolygon(func = taper_splitter_2, initial_params = initial_params, bounds = bounds, z = 0.0, depth = 220e-9, eps_out = 1.44 ** 2, eps_in = 2.8 ** 2, edge_precision = 5, dx = 0.1e-9) ######## DEFINE FIGURE OF MERIT ######## # Although we are optimizing for the same thing, two separate fom objects must be create fom_1 = ModeMatch(monitor_name = 'fom', mode_number = 3, direction = 'Forward') fom_2 = ModeMatch(monitor_name = 'fom', mode_number = 3, direction = 'Forward') ######## DEFINE OPTIMIZATION ALGORITHM ######## #For the optimizer, they should all be set the same, but different objects. Eventually this will be improved optimizer_1 = ScipyOptimizers(max_iter = 40) optimizer_2 = ScipyOptimizers(max_iter = 40) ######## PUT EVERYTHING TOGETHER ######## opt_1 = Optimization(base_script = script_1, wavelengths = wavelengths, fom = fom_1, geometry = geometry_1, optimizer = optimizer_1) opt_2 = Optimization(base_script = script_2, wavelengths = wavelengths, fom = fom_2, geometry = geometry_2, optimizer = optimizer_2) opt = opt_1 + opt_2 ######## RUN THE OPTIMIZER ######## opt.run()
#final value from splitter_opt_2D.py optimization initial_params=np.linspace(0,0.24e-6,10) #initial_params=np.linspace(-0.25e-6,0.25e-6,10) geometry_1550_lower = function_defined_Polygon(func=lower_coupler_arm,initial_params=initial_params,eps_out=1.44 ** 2, eps_in=2.8 ** 2,bounds=bounds,depth=220e-9,edge_precision=5) geometry_1550_upper = function_defined_Polygon(func=upper_coupler_arm,initial_params=initial_params,eps_out=1.44 ** 2, eps_in=2.8 ** 2,bounds=bounds,depth=220e-9,edge_precision=5) geometry_1550=geometry_1550_lower*geometry_1550_upper geometry_1310_lower = function_defined_Polygon(func=lower_coupler_arm,initial_params=initial_params,eps_out=1.44 ** 2, eps_in=2.8 ** 2,bounds=bounds,depth=220e-9,edge_precision=5) geometry_1310_upper = function_defined_Polygon(func=upper_coupler_arm,initial_params=initial_params,eps_out=1.44 ** 2, eps_in=2.8 ** 2,bounds=bounds,depth=220e-9,edge_precision=5) geometry_1310=geometry_1310_lower*geometry_1310_upper ######## DEFINE FIGURE OF MERIT ######## # Although we are optimizing for the same thing, two separate fom objects must be create fom_1550=ModeMatch(modeorder=2,wavelength=1550e-9,monitor_name='fom_1550') fom_1310=ModeMatch(modeorder=2,wavelength=1310e-9,monitor_name='fom_1310') ######## DEFINE OPTIMIZATION ALGORITHM ######## #For the optimizer, they should all be set the same, but different objects. Eventually this will be improved optimizer_1550=ScipyOptimizers(max_iter=40) optimizer_1310=ScipyOptimizers(max_iter=40) ######## PUT EVERYTHING TOGETHER ######## opt_1550=Optimization(base_script=script_1550,fom=fom_1550,geometry=geometry_1550,optimizer=optimizer_1550) opt_1310=Optimization(base_script=script_1310,fom=fom_1310,geometry=geometry_1310,optimizer=optimizer_1310) opt=opt_1550+opt_1310 ######## RUN THE OPTIMIZER ######## opt.run()
fom_1550 = ModeMatch(monitor_name='fom_1550', mode_number=2, direction='Forward', target_T_fwd=lambda wl: np.ones(wl.size), norm_p=1) fom_1310 = ModeMatch(monitor_name='fom_1310', mode_number=2, direction='Forward', target_T_fwd=lambda wl: np.ones(wl.size), norm_p=1) ######## DEFINE OPTIMIZATION ALGORITHM ######## #For the optimizer, they should all be set the same, but different objects. Eventually this will be improved optimizer_1550 = ScipyOptimizers(max_iter=40, method='L-BFGS-B', scaling_factor=1e6, pgtol=1e-9) optimizer_1310 = ScipyOptimizers(max_iter=40, method='L-BFGS-B', scaling_factor=1e6, pgtol=1e-9) ######## PUT EVERYTHING TOGETHER ######## opt_1550 = Optimization(base_script=script_1550, wavelengths=wavelengths_1551, fom=fom_1550, geometry=geometry_1550, optimizer=optimizer_1550, hide_fdtd_cad=False, use_deps=True) opt_1310 = Optimization(base_script=script_1310,