def _hue_bin_data_to_rg(hue_bin_data): jabt_closed = np.vstack( (hue_bin_data['jabt_hj'], hue_bin_data['jabt_hj'][:1, ...])) jabr_closed = np.vstack( (hue_bin_data['jabr_hj'], hue_bin_data['jabr_hj'][:1, ...])) notnan_t = np.logical_not(np.isnan( jabt_closed[..., 1])) # avoid NaN's (i.e. empty hue-bins) notnan_r = np.logical_not(np.isnan(jabr_closed[..., 1])) Rg = np.array([[ 100 * _polyarea(jabt_closed[notnan_t[:, i], i, 1], jabt_closed[notnan_t[:, i], i, 2]) / _polyarea(jabr_closed[notnan_r[:, i], i, 1], jabr_closed[notnan_r[:, i], i, 2]) for i in range(notnan_r.shape[-1]) ]]) return Rg
def PX_colorshift_model(Jabt, Jabr, jab_ranges=None, jab_deltas=None, limit_grid_radius=0): """ Pixelates the color space and calculates the color shifts in each pixel. Args: :Jabt: | ndarray with color coordinates under the (single) test SPD. :Jabr: | ndarray with color coordinates under the (single) reference SPD. :jab_ranges: | None or ndarray, optional | Specifies the pixelization of color space. | (ndarray.shape = (3,3), with first axis: J,a,b, and second | axis: min, max, delta) :jab_deltas: | float or ndarray, optional | Specifies the sampling range. | A float uses jab_deltas as the maximum Euclidean distance to select | samples around each pixel center. A ndarray of 3 deltas, uses | a city block sampling around each pixel center. :limit_grid_radius: | 0, optional | A value of zeros keeps grid as specified by axr,bxr. | A value > 0 only keeps (a,b) coordinates within :limit_grid_radius: Returns: :returns: | dict with the following keys: | - 'Jab': dict with with ndarrays for: | Jabt, Jabr, DEi, DEi_ab (only ab-coordinates), DEa (mean) | and DEa_ab | - 'vshifts': dict with: | * 'vectorshift': ndarray with vector shifts between average | Jabt and Jabr for each pixel | * 'vectorshift_ab': ndarray with vector shifts averaged | over J for each pixel | * 'vectorshift_ab_J0': ndarray with vector shifts averaged | over J for each pixel of J=0 plane. | * 'vectorshift_len': length of 'vectorshift' | * 'vectorshift_ab_len': length of 'vectorshift_ab' | * 'vectorshift_ab_J0_len': length of 'vectorshift_ab_J0' | * 'vectorshift_len_DEnormed': length of 'vectorshift' | normalized to 'DEa' | * 'vectorshift_ab_len_DEnormed': length of 'vectorshift_ab' | normalized to 'DEa_ab' | * 'vectorshift_ab_J0_len_DEnormed': length of 'vectorshift_ab_J0' | normalized to 'DEa_ab' | - 'pixeldata': dict with pixel info: | * 'grid' ndarray with coordinates of all pixel centers. | * 'idx': list[int] with pixel index for each non-empty pixel | * 'Jab': ndarray with center coordinates of non-empty pixels | * 'samplenrs': list[list[int]] with sample numbers belong to | each non-empty pixel | * 'IDs: summarizing list, | with column order: 'idxp, jabp, samplenrs' | - 'fielddata' : dict with dicts containing data on the calculated | vector-field and circle-fields | * 'vectorfield': dict with ndarrays for the ab-coordinates | under the ref. (axr, bxr) and test (axt, bxt) illuminants, | centered at the pixel centers corresponding to the ab-coordinates of the reference illuminant. """ # get pixelIDs of all samples under ref. conditions: gridp, idxp, jabp, pixelsamplenrs, pixelIDs = get_pixel_coordinates( Jabr, jab_ranges=jab_ranges, jab_deltas=jab_deltas, limit_grid_radius=limit_grid_radius) # get average Jab coordinates for each pixel: Npixels = len(idxp) # number of non-empty pixels Jabr_avg = np.zeros((gridp.shape[0], 3)) Jabr_avg.fill(np.nan) Jabt_avg = Jabr_avg.copy() for i in range(Npixels): Jabr_avg[idxp[i], :] = Jabr[pixelsamplenrs[i], :].mean(axis=0) Jabt_avg[idxp[i], :] = Jabt[pixelsamplenrs[i], :].mean(axis=0) #jabtemp = Jabr[pixelsamplenrs[i],:] #jabtempm = Jabr_avg[idxp[i],:] # calculate Jab vector shift: vectorshift = Jabt_avg - Jabr_avg # calculate ab vector shift: uabs = gridp[gridp[:, 0] == 0, 1:3] #np.unique(gridp[:,1:3],axis=0) vectorshift_ab_J0 = np.zeros((uabs.shape[0], 2)) vectorshift_ab_J0.fill(np.nan) vectorshift_ab = np.zeros((vectorshift.shape[0], 2)) vectorshift_ab.fill(np.nan) for i in range(uabs.shape[0]): cond = (gridp[:, 1:3] == uabs[i, :]).all(axis=1) if cond.any() & np.logical_not( np.isnan(vectorshift[cond, 1:3]).all() ): #last condition is to avoid warning of taking nanmean of empty slice when all are NaNs vectorshift_ab_J0[i, :] = np.nanmean(vectorshift[cond, 1:3], axis=0) vectorshift_ab[cond, :] = np.nanmean(vectorshift[cond, 1:3], axis=0) # Calculate length of shift vectors: vectorshift_len = np.sqrt((vectorshift**2).sum(axis=vectorshift.ndim - 1)) vectorshift_ab_len = np.sqrt( (vectorshift_ab**2).sum(axis=vectorshift_ab.ndim - 1)) vectorshift_ab_J0_len = np.sqrt( (vectorshift_ab_J0**2).sum(axis=vectorshift_ab_J0.ndim - 1)) # Calculate average DE for normalization of vectorshifts DEi_Jab_avg = np.sqrt(((Jabt - Jabr)**2).sum(axis=Jabr.ndim - 1)) DE_Jab_avg = DEi_Jab_avg.mean(axis=0) DEi_ab_avg = np.sqrt( ((Jabt[..., 1:3] - Jabr[..., 1:3])**2).sum(axis=Jabr[..., 1:3].ndim - 1)) DE_ab_avg = DEi_ab_avg.mean(axis=0) # calculate vectorfield: axr = uabs[:, 0, None] bxr = uabs[:, 1, None] axt = axr + vectorshift_ab_J0[:, 0, None] bxt = bxr + vectorshift_ab_J0[:, 1, None] data = { 'Jab': { 'Jabr': Jabr_avg, 'Jabt': Jabt_avg, 'DEi': DEi_Jab_avg, 'DEi_ab': DEi_ab_avg, 'DEa': DE_Jab_avg, 'DEa_ab': DE_ab_avg }, 'vshifts': { 'vectorshift': vectorshift, 'vectorshift_ab': vectorshift_ab, 'vectorshift_ab_J0': vectorshift_ab_J0, 'vectorshift_len': vectorshift_len, 'vectorshift_ab_len': vectorshift_ab_len, 'vectorshift_ab_J0_len': vectorshift_ab_J0_len, 'vectorshift_len_DEnormed': vectorshift_len / DE_Jab_avg, 'vectorshift_ab_len_DEnormed': vectorshift_ab_len / DE_ab_avg, 'vectorshift_ab_J0_len_DEnormed': vectorshift_ab_J0_len / DE_ab_avg }, 'pixeldata': { 'grid': gridp, 'idx': idxp, 'Jab': jabp, 'samplenrs': pixelsamplenrs, 'IDs': pixelIDs }, 'fielddata': { 'vectorfield': { 'axr': axr, 'bxr': bxr, 'axt': axt, 'bxt': bxt } } } return data
def xyz_to_rfl(xyz, CSF = None, rfl = None, out = 'rfl_est', \ refspd = None, D = None, cieobs = _CIEOBS, \ cspace = 'xyz', cspace_tf = {},\ interp_type = 'nd', k_neighbours = 4, verbosity = 0): """ Approximate spectral reflectance of xyz values based on nd-dimensional linear interpolation or k nearest neighbour interpolation of samples from a standard reflectance set. Args: :xyz: | ndarray with xyz values of target points. :CSF: | None, optional | RGB camera response functions. | If None: input :xyz: contains raw rgb (float) values. Override :cspace: | argument and perform estimation directly in raw rgb space!!! :rfl: | ndarray, optional | Reflectance set for color coordinate to rfl mapping. :out: | 'rfl_est' or str, optional :refspd: | None, optional | Refer ence spectrum for color coordinate to rfl mapping. | None defaults to D65. :cieobs: | _CIEOBS, optional | CMF set used for calculation of xyz from spectral data. :cspace: | 'xyz', optional | Color space for color coordinate to rfl mapping. | Tip: Use linear space (e.g. 'xyz', 'Yuv',...) for (interp_type == 'nd'), | and perceptually uniform space (e.g. 'ipt') for (interp_type == 'nearest') :cspace_tf: | {}, optional | Dict with parameters for xyz_to_cspace and cspace_to_xyz transform. :interp_type: | 'nd', optional | Options: | - 'nd': perform n-dimensional linear interpolation using Delaunay triangulation. | - 'nearest': perform nearest neighbour interpolation. :k_neighbours: | 4 or int, optional | Number of nearest neighbours for reflectance spectrum interpolation. | Neighbours are found using scipy.spatial.cKDTree :verbosity: | 0, optional | If > 0: make a plot of the color coordinates of original and | rendered image pixels. Returns: :returns: | :rfl_est: | ndarrays with estimated reflectance spectra. """ # get rfl set: if rfl is None: # use IESTM30['4880'] set rfl = _CRI_RFL['ies-tm30']['4880']['5nm'] wlr = rfl[0] # get Ref spd: if refspd is None: refspd = _CIE_ILLUMINANTS['D65'].copy() refspd = cie_interp( refspd, wlr, kind='linear') # force spd to same wavelength range as rfl # Calculate rgb values of standard rfl set under refspd: if CSF is None: # Calculate lab coordinates: xyz_rr, xyz_wr = spd_to_xyz(refspd, relative=True, rfl=rfl, cieobs=cieobs, out=2) cspace_tf_copy = cspace_tf.copy() cspace_tf_copy[ 'xyzw'] = xyz_wr # put correct white point in param. dict lab_rr = colortf(xyz_rr, tf=cspace, fwtf=cspace_tf_copy, bwtf=cspace_tf_copy)[:, 0, :] else: # Calculate rgb coordinates from camera sensitivity functions rgb_rr = rfl_to_rgb(rfl, spd=refspd, CSF=CSF, wl=None) lab_rr = rgb_rr xyz = xyz lab_rr = np.round(lab_rr, _ROUNDING) # speed up search # Convert xyz to lab-type values under refspd: if CSF is None: lab = colortf(xyz, tf=cspace, fwtf=cspace_tf_copy, bwtf=cspace_tf_copy) else: lab = xyz # xyz contained rgb values !!! rgb = xyz lab = np.round(lab, _ROUNDING) # speed up search if interp_type == 'nearest': # Find rfl (cfr. lab_rr) from rfl set that results in 'near' metameric # color coordinates for each value in lab_ur (i.e. smallest DE): # Construct cKDTree: tree = sp.spatial.cKDTree(lab_rr, copy_data=True) # Interpolate rfls using k nearest neightbours and inverse distance weigthing: d, inds = tree.query(lab, k=k_neighbours) if k_neighbours > 1: d += _EPS w = (1.0 / d**2)[:, :, None] # inverse distance weigthing rfl_est = np.sum(w * rfl[inds + 1, :], axis=1) / np.sum(w, axis=1) else: rfl_est = rfl[inds + 1, :].copy() elif interp_type == 'nd': rfl_est = math.ndinterp1_scipy(lab_rr, rfl[1:], lab) _isnan = np.isnan(rfl_est[:, 0]) if ( _isnan.any() ): #do nearest neigbour method for those that fail using Delaunay (i.e. ndinterp1_scipy) # Find rfl (cfr. lab_rr) from rfl set that results in 'near' metameric # color coordinates for each value in lab_ur (i.e. smallest DE): # Construct cKDTree: tree = sp.spatial.cKDTree(lab_rr, copy_data=True) # Interpolate rfls using k nearest neightbours and inverse distance weigthing: d, inds = tree.query(lab[_isnan, ...], k=k_neighbours) if k_neighbours > 1: d += _EPS w = (1.0 / d**2)[:, :, None] # inverse distance weigthing rfl_est_isnan = np.sum(w * rfl[inds + 1, :], axis=1) / np.sum( w, axis=1) else: rfl_est_isnan = rfl[inds + 1, :].copy() rfl_est[_isnan, :] = rfl_est_isnan else: raise Exception('xyz_to_rfl(): unsupported interp_type!') rfl_est[ rfl_est < 0] = 0 #can occur for points outside convexhull of standard rfl set. rfl_est = np.vstack((rfl[0], rfl_est)) if ((verbosity > 0) | ('xyz_est' in out.split(',')) | ('lab_est' in out.split(',')) | ('DEi_ab' in out.split(',')) | ('DEa_ab' in out.split(','))) & (CSF is None): xyz_est, _ = spd_to_xyz(refspd, rfl=rfl_est, relative=True, cieobs=cieobs, out=2) cspace_tf_copy = cspace_tf.copy() cspace_tf_copy[ 'xyzw'] = xyz_wr # put correct white point in param. dict lab_est = colortf(xyz_est, tf=cspace, fwtf=cspace_tf_copy)[:, 0, :] DEi_ab = np.sqrt(((lab_est[:, 1:3] - lab[:, 1:3])**2).sum(axis=1)) DEa_ab = DEi_ab.mean() elif ((verbosity > 0) | ('xyz_est' in out.split(',')) | ('rgb_est' in out.split(',')) | ('DEi_rgb' in out.split(',')) | ('DEa_rgb' in out.split(','))) & (CSF is not None): rgb_est = rfl_to_rgb(rfl_est[1:], spd=refspd, CSF=CSF, wl=wlr) xyz_est = rgb_est DEi_rgb = np.sqrt(((rgb_est - rgb)**2).sum(axis=1)) DEa_rgb = DEi_rgb.mean() if verbosity > 0: if CSF is None: ax = plot_color_data(lab[...,1], lab[...,2], z = lab[...,0], \ show = False, cieobs = cieobs, cspace = cspace, \ formatstr = 'ro', label = 'Original') plot_color_data(lab_est[...,1], lab_est[...,2], z = lab_est[...,0], \ show = True, axh = ax, cieobs = cieobs, cspace = cspace, \ formatstr = 'bd', label = 'Rendered') else: n = 100 #min(rfl.shape[0]-1,rfl_est.shape[0]-1) s = np.random.permutation(rfl.shape[0] - 1)[:min(n, rfl.shape[0] - 1)] st = np.random.permutation(rfl_est.shape[0] - 1)[:min(n, rfl_est.shape[0] - 1)] fig = plt.figure() ax = np.zeros((3, ), dtype=np.object) ax[0] = fig.add_subplot(131) ax[1] = fig.add_subplot(132) ax[2] = fig.add_subplot(133, projection='3d') ax[0].plot(rfl[0], rfl[1:][s].T, linestyle='-') ax[0].set_title('Original RFL set (random selection of all)') ax[0].set_ylim([0, 1]) ax[1].plot(rfl_est[0], rfl_est[1:][st].T, linestyle='--') ax[0].set_title('Estimated RFL set (random selection of targets)') ax[1].set_ylim([0, 1]) ax[2].plot(rgb[st, 0], rgb[st, 1], rgb[st, 2], 'ro', label='Original') ax[2].plot(rgb_est[st, 0], rgb_est[st, 1], rgb_est[st, 2], 'bd', label='Rendered') ax[2].legend() if out == 'rfl_est': return rfl_est elif out == 'rfl_est,xyz_est': return rfl_est, xyz_est else: return eval(out)
def plot_chromaticity_diagram_colors(diagram_samples = 256, diagram_opacity = 1.0, diagram_lightness = 0.25,\ cieobs = _CIEOBS, cspace = 'Yxy', cspace_pars = {},\ show = True, axh = None,\ show_grid = False, label_fontname = 'Times New Roman', label_fontsize = 12,\ **kwargs): """ Plot the chromaticity diagram colors. Args: :diagram_samples: | 256, optional | Sampling resolution of color space. :diagram_opacity: | 1.0, optional | Sets opacity of chromaticity diagram :diagram_lightness: | 0.25, optional | Sets lightness of chromaticity diagram :axh: | None or axes handle, optional | Determines axes to plot data in. | None: make new figure. :show: | True or False, optional | Invoke matplotlib.pyplot.show() right after plotting :cieobs: | luxpy._CIEOBS or str, optional | Determines CMF set to calculate spectrum locus or other. :cspace: | luxpy._CSPACE or str, optional | Determines color space / chromaticity diagram to plot data in. | Note that data is expected to be in specified :cspace: :cspace_pars: | {} or dict, optional | Dict with parameters required by color space specified in :cspace: | (for use with luxpy.colortf()) :show_grid: | False, optional | Show grid (True) or not (False) :label_fontname: | 'Times New Roman', optional | Sets font type of axis labels. :label_fontsize: | 12, optional | Sets font size of axis labels. :kwargs: | additional keyword arguments for use with matplotlib.pyplot. Returns: """ if isinstance(cieobs, str): SL = _CMF[cieobs]['bar'][1:4].T else: SL = cieobs[1:4].T SL = 100.0 * SL / (SL[:, 1, None] + _EPS) SL = SL[SL.sum(axis=1) > 0, :] # avoid div by zero in xyz-to-Yxy conversion SL = colortf(SL, tf=cspace, tfa0=cspace_pars) plambdamax = SL[:, 1].argmax() SL = np.vstack( (SL[:(plambdamax + 1), :], SL[0]) ) # add lowest wavelength data and go to max of gamut in x (there is a reversal for some cmf set wavelengths >~700 nm!) Y, x, y = asplit(SL) SL = np.vstack((x, y)).T # create grid for conversion to srgb offset = _EPS min_x = min(offset, x.min()) max_x = max(1, x.max()) min_y = min(offset, y.min()) max_y = max(1, y.max()) ii, jj = np.meshgrid( np.linspace(min_x - offset, max_x + offset, int(diagram_samples)), np.linspace(max_y + offset, min_y - offset, int(diagram_samples))) ij = np.dstack((ii, jj)) ij[ij == 0] = offset ij2D = ij.reshape((diagram_samples**2, 2)) ij2D = np.hstack((diagram_lightness * 100 * np.ones( (ij2D.shape[0], 1)), ij2D)) xyz = colortf(ij2D, tf=cspace + '>xyz', tfa0=cspace_pars) xyz[xyz < 0] = 0 xyz[np.isinf(xyz.sum(axis=1)), :] = np.nan xyz[np.isnan(xyz.sum(axis=1)), :] = offset srgb = xyz_to_srgb(xyz) srgb = srgb / srgb.max() srgb = srgb.reshape((diagram_samples, diagram_samples, 3)) if show == True: if axh is None: fig = plt.figure() axh = fig.add_subplot(111) polygon = Polygon(SL, facecolor='none', edgecolor='none') axh.add_patch(polygon) image = axh.imshow(srgb, interpolation='bilinear', extent=(min_x, max_x, min_y - 0.05, max_y), clip_path=None, alpha=diagram_opacity) image.set_clip_path(polygon) axh.plot(x, y, color='darkgray') if (cspace == 'Yxy') & (isinstance(cieobs, str)): axh.set_xlim([0, 1]) axh.set_ylim([0, 1]) elif (cspace == 'Yuv') & (isinstance(cieobs, str)): axh.set_xlim([0, 0.6]) axh.set_ylim([0, 0.6]) if (cspace is not None): xlabel = _CSPACE_AXES[cspace][1] ylabel = _CSPACE_AXES[cspace][2] if (label_fontname is not None) & (label_fontsize is not None): axh.set_xlabel(xlabel, fontname=label_fontname, fontsize=label_fontsize) axh.set_ylabel(ylabel, fontname=label_fontname, fontsize=label_fontsize) if show_grid == True: axh.grid(True) #plt.show() return axh else: return None
def cie2006cmfsEx(age = 32,fieldsize = 10, wl = None,\ var_od_lens = 0, var_od_macula = 0, \ var_od_L = 0, var_od_M = 0, var_od_S = 0,\ var_shft_L = 0, var_shft_M = 0, var_shft_S = 0,\ out = 'LMS', allow_negative_values = False): """ Generate Individual Observer CMFs (cone fundamentals) based on CIE2006 cone fundamentals and published literature on observer variability in color matching and in physiological parameters. Args: :age: | 32 or float or int, optional | Observer age :fieldsize: | 10, optional | Field size of stimulus in degrees (between 2° and 10°). :wl: | None, optional | Interpolation/extraplation of :LMS: output to specified wavelengths. | None: output original _WL = np.array([390,780,5]) :var_od_lens: | 0, optional | Std Dev. in peak optical density [%] of lens. :var_od_macula: | 0, optional | Std Dev. in peak optical density [%] of macula. :var_od_L: | 0, optional | Std Dev. in peak optical density [%] of L-cone. :var_od_M: | 0, optional | Std Dev. in peak optical density [%] of M-cone. :var_od_S: | 0, optional | Std Dev. in peak optical density [%] of S-cone. :var_shft_L: | 0, optional | Std Dev. in peak wavelength shift [nm] of L-cone. :var_shft_L: | 0, optional | Std Dev. in peak wavelength shift [nm] of M-cone. :var_shft_S: | 0, optional | Std Dev. in peak wavelength shift [nm] of S-cone. :out: | 'LMS' or , optional | Determines output. :allow_negative_values: | False, optional | Cone fundamentals or color matching functions should not have negative values. | If False: X[X<0] = 0. Returns: :returns: | - 'LMS' : ndarray with individual observer area-normalized | cone fundamentals. Wavelength have been added. | [- 'trans_lens': ndarray with lens transmission | (no wavelengths added, no interpolation) | - 'trans_macula': ndarray with macula transmission | (no wavelengths added, no interpolation) | - 'sens_photopig' : ndarray with photopigment sens. | (no wavelengths added, no interpolation)] References: 1. `Asano Y, Fairchild MD, and Blondé L (2016). Individual Colorimetric Observer Model. PLoS One 11, 1–19. <http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145671>`_ 2. `Asano Y, Fairchild MD, Blondé L, and Morvan P (2016). Color matching experiment for highlighting interobserver variability. Color Res. Appl. 41, 530–539. <https://onlinelibrary.wiley.com/doi/abs/10.1002/col.21975>`_ 3. `CIE, and CIE (2006). Fundamental Chromaticity Diagram with Physiological Axes - Part I (Vienna: CIE). <http://www.cie.co.at/publications/fundamental-chromaticity-diagram-physiological-axes-part-1>`_ 4. `Asano's Individual Colorimetric Observer Model <https://www.rit.edu/cos/colorscience/re_AsanoObserverFunctions.php>`_ """ fs = fieldsize rmd = _INDVCMF_DATA['rmd'].copy() LMSa = _INDVCMF_DATA['LMSa'].copy() docul = _INDVCMF_DATA['docul'].copy() # field size corrected macular density: pkOd_Macula = 0.485 * np.exp(-fs / 6.132) * ( 1 + var_od_macula / 100) # varied peak optical density of macula corrected_rmd = rmd * pkOd_Macula # age corrected lens/ocular media density: if (age <= 60): correct_lomd = docul[:1] * (1 + 0.02 * (age - 32)) + docul[1:2] else: correct_lomd = docul[:1] * (1.56 + 0.0667 * (age - 60)) + docul[1:2] correct_lomd = correct_lomd * (1 + var_od_lens / 100 ) # varied overall optical density of lens # Peak Wavelength Shift: wl_shifted = np.empty(LMSa.shape) wl_shifted[0] = _WL + var_shft_L wl_shifted[1] = _WL + var_shft_M wl_shifted[2] = _WL + var_shft_S LMSa_shft = np.empty(LMSa.shape) kind = 'cubic' LMSa_shft[0] = sp.interpolate.interp1d(wl_shifted[0], LMSa[0], kind=kind, bounds_error=False, fill_value="extrapolate")(_WL) LMSa_shft[1] = sp.interpolate.interp1d(wl_shifted[1], LMSa[1], kind=kind, bounds_error=False, fill_value="extrapolate")(_WL) LMSa_shft[2] = sp.interpolate.interp1d(wl_shifted[2], LMSa[2], kind=kind, bounds_error=False, fill_value="extrapolate")(_WL) # LMSa[2,np.where(_WL >= _WL_CRIT)] = 0 #np.nan # Not defined above 620nm # LMSa_shft[2,np.where(_WL >= _WL_CRIT)] = 0 ssw = np.hstack( (0, np.sign(np.diff(LMSa_shft[2, :])) )) #detect poor interpolation (sign switch due to instability) LMSa_shft[2, np.where((ssw >= 0) & (_WL > 560))] = np.nan # corrected LMS (no age correction): pkOd_L = (0.38 + 0.54 * np.exp(-fs / 1.333)) * ( 1 + var_od_L / 100) # varied peak optical density of L-cone pkOd_M = (0.38 + 0.54 * np.exp(-fs / 1.333)) * ( 1 + var_od_M / 100) # varied peak optical density of M-cone pkOd_S = (0.30 + 0.45 * np.exp(-fs / 1.333)) * ( 1 + var_od_S / 100) # varied peak optical density of S-cone alpha_lms = 0. * LMSa_shft alpha_lms[0] = 1 - 10**(-pkOd_L * (10**LMSa_shft[0])) alpha_lms[1] = 1 - 10**(-pkOd_M * (10**LMSa_shft[1])) alpha_lms[2] = 1 - 10**(-pkOd_S * (10**LMSa_shft[2])) # this fix is required because the above math fails for alpha_lms[2,:]==0 alpha_lms[2, np.where(_WL >= _WL_CRIT)] = 0 # Corrected to Corneal Incidence: lms_barq = alpha_lms * (10**(-corrected_rmd - correct_lomd)) * np.ones( alpha_lms.shape) # Corrected to Energy Terms: lms_bar = lms_barq * _WL # Set NaN values to zero: lms_bar[np.isnan(lms_bar)] = 0 # normalized: LMS = 100 * lms_bar / np.nansum(lms_bar, axis=1, keepdims=True) # Output extra: trans_lens = 10**(-correct_lomd) trans_macula = 10**(-corrected_rmd) sens_photopig = alpha_lms * _WL # Add wavelengths: LMS = np.vstack((_WL, LMS)) if ('xyz' in out.lower().split(',')): LMS = lmsb_to_xyzb(LMS, fieldsize, out='xyz', allow_negative_values=allow_negative_values) out = out.replace('xyz', 'LMS').replace('XYZ', 'LMS') if ('lms' in out.lower().split(',')): out = out.replace('lms', 'LMS') # Interpolate/extrapolate: if wl is None: interpolation = None else: interpolation = 'cubic' LMS = spd(LMS, wl=wl, interpolation=interpolation, norm_type='area') if (out == 'LMS'): return LMS elif (out == 'LMS,trans_lens,trans_macula,sens_photopig'): return LMS, trans_lens, trans_macula, sens_photopig elif (out == 'LMS,trans_lens,trans_macula,sens_photopig,LMSa'): return LMS, trans_lens, trans_macula, sens_photopig, LMSa else: return eval(out)
def cie_interp(data, wl_new, kind=None, negative_values_allowed=False, extrap_values=None): """ Interpolate / extrapolate spectral data following standard CIE15-2018. | The kind of interpolation depends on the spectrum type defined in :kind:. | Extrapolation is always done by replicate the closest known values. Args: :data: | ndarray with spectral data | (.shape = (number of spectra + 1, number of original wavelengths)) :wl_new: | ndarray with new wavelengths :kind: | None, optional | - If :kind: is None, return original data. | - If :kind: is a spectrum type (see _INTERP_TYPES), the correct | interpolation type if automatically chosen. | - Or :kind: can be any interpolation type supported by | scipy.interpolate.interp1d (math.interp1d if nan's are present!!) :negative_values_allowed: | False, optional | If False: negative values are clipped to zero. :extrap_values: | None, optional | If None: use CIE recommended 'closest value' approach when extrapolating. | If float or list or ndarray, use those values to fill extrapolated value(s). | If 'ext': use normal extrapolated values by scipy.interpolate.interp1d Returns: :returns: | ndarray of interpolated spectral data. | (.shape = (number of spectra + 1, number of wavelength in wl_new)) """ if (kind is not None): # Wavelength definition: wl_new = getwlr(wl_new) if (not np.array_equal(data[0], wl_new)) | np.isnan(data).any(): extrap_values = np.atleast_1d(extrap_values) # Set interpolation type based on data type: if kind in _INTERP_TYPES['linear']: kind = 'linear' elif kind in _INTERP_TYPES['cubic']: kind = 'cubic' # define wl, S, wl_new: wl = np.array(data[0]) S = data[1:] wl_new = np.array(wl_new) # Interpolate each spectrum in S: N = S.shape[0] nan_indices = np.isnan(S) # Interpolate all (if not all rows have nan): rows_with_nans = np.where(nan_indices.sum(axis=1))[0] if not (rows_with_nans.size == N): #allrows_nans = False if extrap_values[0] is None: fill_value = (0, 0) elif (((type(extrap_values[0]) == np.str_) | (type(extrap_values[0]) == str)) and (extrap_values[0][:3] == 'ext')): fill_value = 'extrapolate' else: fill_value = (extrap_values[0], extrap_values[-1]) Si = sp.interpolate.interp1d(wl, S, kind=kind, bounds_error=False, fill_value=fill_value)(wl_new) #extrapolate by replicating closest known (in source data!) value (conform CIE15-2004 recommendation) if extrap_values[0] is None: Si[:, wl_new < wl[0]] = S[:, :1] Si[:, wl_new > wl[-1]] = S[:, -1:] else: #allrows_nans = True Si = np.zeros([N, wl_new.shape[0]]) Si.fill(np.nan) # Re-interpolate those which have none: if nan_indices.any(): #looping required as some values are NaN's for i in rows_with_nans: nonan_indices = np.logical_not(nan_indices[i]) wl_nonan = wl[nonan_indices] S_i_nonan = S[i][nonan_indices] Si_nonan = math.interp1(wl_nonan, S_i_nonan, wl_new, kind=kind, ext='extrapolate') # Si_nonan = sp.interpolate.interp1d(wl_nonan, S_i_nonan, kind = kind, bounds_error = False, fill_value = 'extrapolate')(wl_new) #extrapolate by replicating closest known (in source data!) value (conform CIE15-2004 recommendation) if extrap_values[0] is None: Si_nonan[wl_new < wl_nonan[0]] = S_i_nonan[0] Si_nonan[wl_new > wl_nonan[-1]] = S_i_nonan[-1] elif (((type(extrap_values[0]) == np.str_) | (type(extrap_values[0]) == str)) and (extrap_values[0][:3] == 'ext')): pass else: Si_nonan[wl_new < wl_nonan[0]] = extrap_values[0] Si_nonan[wl_new > wl_nonan[-1]] = extrap_values[-1] Si[i] = Si_nonan # No negative values allowed for spectra: if negative_values_allowed == False: if np.any(Si): Si[Si < 0.0] = 0.0 # Add wavelengths to data array: return np.vstack((wl_new, Si)) return data
def xyz_to_rfl(xyz, rfl = None, out = 'rfl_est', \ refspd = None, D = None, cieobs = _CIEOBS, \ cspace = 'xyz', cspace_tf = {},\ interp_type = 'nd', k_neighbours = 4, verbosity = 0): """ Approximate spectral reflectance of xyz based on nd-dimensional linear interpolation or k nearest neighbour interpolation of samples from a standard reflectance set. Args: :xyz: | ndarray with tristimulus values of target points. :rfl: | ndarray, optional | Reflectance set for color coordinate to rfl mapping. :out: | 'rfl_est' or str, optional :refspd: | None, optional | Refer ence spectrum for color coordinate to rfl mapping. | None defaults to D65. :cieobs: | _CIEOBS, optional | CMF set used for calculation of xyz from spectral data. :cspace: | 'xyz', optional | Color space for color coordinate to rfl mapping. | Tip: Use linear space (e.g. 'xyz', 'Yuv',...) for (interp_type == 'nd'), | and perceptually uniform space (e.g. 'ipt') for (interp_type == 'nearest') :cspace_tf: | {}, optional | Dict with parameters for xyz_to_cspace and cspace_to_xyz transform. :interp_type: | 'nd', optional | Options: | - 'nd': perform n-dimensional linear interpolation using Delaunay triangulation. | - 'nearest': perform nearest neighbour interpolation. :k_neighbours: | 4 or int, optional | Number of nearest neighbours for reflectance spectrum interpolation. | Neighbours are found using scipy.spatial.cKDTree :verbosity: | 0, optional | If > 0: make a plot of the color coordinates of original and | rendered image pixels. Returns: :returns: | :rfl_est: | ndarrays with estimated reflectance spectra. """ # get rfl set: if rfl is None: # use IESTM30['4880'] set rfl = _CRI_RFL['ies-tm30']['4880']['5nm'] # get Ref spd: if refspd is None: refspd = _CIE_ILLUMINANTS['D65'].copy() # Calculate lab-type coordinates of standard rfl set under refspd: xyz_rr, xyz_wr = spd_to_xyz(refspd, relative=True, rfl=rfl, cieobs=cieobs, out=2) cspace_tf_copy = cspace_tf.copy() cspace_tf_copy['xyzw'] = xyz_wr # put correct white point in param. dict lab_rr = colortf(xyz_rr, tf=cspace, fwtf=cspace_tf_copy, bwtf=cspace_tf_copy)[:, 0, :] # Convert xyz to lab-type values under refspd: lab = colortf(xyz, tf=cspace, fwtf=cspace_tf_copy, bwtf=cspace_tf_copy) if interp_type == 'nearest': # Find rfl (cfr. lab_rr) from rfl set that results in 'near' metameric # color coordinates for each value in lab_ur (i.e. smallest DE): # Construct cKDTree: tree = sp.spatial.cKDTree(lab_rr, copy_data=True) # Interpolate rfls using k nearest neightbours and inverse distance weigthing: d, inds = tree.query(lab, k=k_neighbours) if k_neighbours > 1: d += _EPS w = (1.0 / d**2)[:, :, None] # inverse distance weigthing rfl_est = np.sum(w * rfl[inds + 1, :], axis=1) / np.sum(w, axis=1) else: rfl_est = rfl[inds + 1, :].copy() elif interp_type == 'nd': rfl_est = math.ndinterp1_scipy(lab_rr, rfl[1:], lab) _isnan = np.isnan(rfl_est[:, 0]) if ( _isnan.any() ): #do nearest neigbour method for those that fail using Delaunay (i.e. ndinterp1_scipy) # Find rfl (cfr. lab_rr) from rfl set that results in 'near' metameric # color coordinates for each value in lab_ur (i.e. smallest DE): # Construct cKDTree: tree = sp.spatial.cKDTree(lab_rr, copy_data=True) # Interpolate rfls using k nearest neightbours and inverse distance weigthing: d, inds = tree.query(lab[_isnan, ...], k=k_neighbours) if k_neighbours > 1: d += _EPS w = (1.0 / d**2)[:, :, None] # inverse distance weigthing rfl_est_isnan = np.sum(w * rfl[inds + 1, :], axis=1) / np.sum( w, axis=1) else: rfl_est_isnan = rfl[inds + 1, :].copy() rfl_est[_isnan, :] = rfl_est_isnan else: raise Exception('xyz_to_rfl(): unsupported interp_type!') rfl_est[ rfl_est < 0] = 0 #can occur for points outside convexhull of standard rfl set. rfl_est = np.vstack((rfl[0], rfl_est)) if (verbosity > 0) | ('xyz_est' in out.split(',')) | ( 'lab_est' in out.split(',')) | ('DEi_ab' in out.split(',')) | ( 'DEa_ab' in out.split(',')): xyz_est, _ = spd_to_xyz(refspd, rfl=rfl_est, relative=True, cieobs=cieobs, out=2) cspace_tf_copy = cspace_tf.copy() cspace_tf_copy[ 'xyzw'] = xyz_wr # put correct white point in param. dict lab_est = colortf(xyz_est, tf=cspace, fwtf=cspace_tf_copy)[:, 0, :] DEi_ab = np.sqrt(((lab_est[:, 1:3] - lab[:, 1:3])**2).sum(axis=1)) DEa_ab = DEi_ab.mean() if verbosity > 0: ax = plot_color_data(lab[...,1], lab[...,2], z = lab[...,0], \ show = False, cieobs = cieobs, cspace = cspace, \ formatstr = 'ro', label = 'Original') plot_color_data(lab_est[...,1], lab_est[...,2], z = lab_est[...,0], \ show = True, axh = ax, cieobs = cieobs, cspace = cspace, \ formatstr = 'bd', label = 'Rendered') if out == 'rfl_est': return rfl_est elif out == 'rfl_est,xyz_est': return rfl_est, xyz_est else: return eval(out)