def __init__(self, class_dict_coder=None, n_folds=None, sparse_coder=None, param_grid=None, n_class_samples=None, n_test_samples=None, n_tests=1, method="global", mmap=False, n_jobs=1): classifier.__init__(self, n_folds=n_folds, param_grid=param_grid, n_class_samples=n_class_samples, n_test_samples=n_test_samples, n_tests=n_tests, name=method + 'src_feature_classifier') # a class that will do class dictionary learning # of the data self.class_dict_coder = class_dict_coder self.sparse_coder = sparse_coder # if method='global' then we extract global SRC features # if method='local' then we extract local SRC features self.method = method self.mmap = mmap self.n_jobs = n_jobs self.sparse_coder.mmap = self.mmap self.sparse_coder.n_jobs = self.n_jobs self.D = None self.features_extracted = False self.Z_train = None self.Z_test = None
def __init__(self, class_dict_coder=None, n_folds=None, sparse_coder=None, n_class_samples=None, n_test_samples=None, n_tests=1, method="global", mmap=False, n_jobs=1): classifier.__init__(self, n_folds=n_folds, n_class_samples=n_class_samples, n_test_samples=n_test_samples, n_tests=n_tests, name=method + '_src_classifier') self.class_dict_coder = class_dict_coder self.sparse_coder = sparse_coder # if method='global' then we apply the global SRC classifier # if method='local' then we apply the local SRC classifier self.method = method self.mmap = mmap self.n_jobs = n_jobs
def __init__(self, class_dict_coder=None, param_grid=None, sparse_coder=None, max_iter=2, approx=True, eta=0, n_class_samples=None, n_test_samples=None, n_tests=1, n_folds=None, alpha=1, beta=1, mmap=False, verbose=False, n_jobs=1): classifier.__init__(self, n_folds=n_folds, param_grid=param_grid, n_class_samples=n_class_samples, n_test_samples=n_test_samples, n_tests=n_tests, name='lc_ksvd_classifier') # n_class_atoms,n_nonzero_coefs are arrays # that specify the params of each class dict self.class_dict_coder = class_dict_coder self.n_class_atoms = None self.sparse_coder = sparse_coder self.max_iter = max_iter self.approx = approx # the parameters of the LC-KSVD algorithm self.alpha = alpha self.beta = beta self.mmap = mmap self.verbose = verbose self.n_jobs = n_jobs self.sparse_coder.n_jobs = n_jobs
def __init__(self, class_dict_coder=None, param_grid=None, sparse_coder=None, max_iter=2, approx=True, eta=0, n_class_samples=None, n_test_samples=None, n_tests=1, n_folds=None, alpha=1, beta=1, mmap=False, verbose=False, n_jobs=1): classifier.__init__(self, n_folds=n_folds, param_grid=param_grid, n_class_samples=n_class_samples, n_test_samples=n_test_samples, n_tests=n_tests, name='lc_ksvd_classifier') # n_class_atoms,n_nonzero_coefs are arrays # that specify the params of each class dict self.class_dict_coder = class_dict_coder self.n_class_atoms = None self.sparse_coder = sparse_coder self.max_iter = max_iter self.approx = approx # the parameters of the lc_ksvd algorithm self.alpha = alpha self.beta = beta self.mmap = mmap self.verbose = verbose self.n_jobs = n_jobs self.sparse_coder.n_jobs = n_jobs