예제 #1
0
    def test_learning(self):
        pol_net = PolNet(self.env.observation_space,
                         self.env.action_space,
                         h1=32,
                         h2=32)
        pol = GaussianPol(self.env.observation_space, self.env.action_space,
                          pol_net)

        vf_net = VNet(self.env.observation_space)
        vf = DeterministicSVfunc(self.env.observation_space, vf_net)

        discrim_net = DiscrimNet(self.env.observation_space,
                                 self.env.action_space,
                                 h1=32,
                                 h2=32)
        discrim = DeterministicSAVfunc(self.env.observation_space,
                                       self.env.action_space, discrim_net)

        sampler = EpiSampler(self.env, pol, num_parallel=1)

        optim_vf = torch.optim.Adam(vf_net.parameters(), 3e-4)
        optim_discrim = torch.optim.Adam(discrim_net.parameters(), 3e-4)

        with open(os.path.join('data/expert_epis', 'Pendulum-v0_2epis.pkl'),
                  'rb') as f:
            expert_epis = pickle.load(f)
        expert_traj = Traj()
        expert_traj.add_epis(expert_epis)
        expert_traj.register_epis()

        epis = sampler.sample(pol, max_steps=32)

        agent_traj = Traj()
        agent_traj.add_epis(epis)
        agent_traj = ef.compute_pseudo_rews(agent_traj, discrim)
        agent_traj = ef.compute_vs(agent_traj, vf)
        agent_traj = ef.compute_rets(agent_traj, 0.99)
        agent_traj = ef.compute_advs(agent_traj, 0.99, 0.95)
        agent_traj = ef.centerize_advs(agent_traj)
        agent_traj = ef.compute_h_masks(agent_traj)
        agent_traj.register_epis()

        result_dict = gail.train(agent_traj,
                                 expert_traj,
                                 pol,
                                 vf,
                                 discrim,
                                 optim_vf,
                                 optim_discrim,
                                 rl_type='trpo',
                                 epoch=1,
                                 batch_size=32,
                                 discrim_batch_size=32,
                                 discrim_step=1,
                                 pol_ent_beta=1e-3,
                                 discrim_ent_beta=1e-5)

        del sampler
예제 #2
0
        agent_traj.register_epis()

        if args.data_parallel:
            pol.dp_run = True
            vf.dp_run = True
            discrim.dp_run = True

        if args.rl_type == 'trpo':
            result_dict = gail.train(
                agent_traj,
                expert_traj,
                pol,
                vf,
                discrim,
                optim_vf,
                optim_discrim,
                rl_type=args.rl_type,
                epoch=args.epoch_per_iter,
                batch_size=args.batch_size
                if not args.rnn else args.rnn_batch_size,
                discrim_batch_size=args.discrim_batch_size,
                discrim_step=args.discrim_step,
                pol_ent_beta=args.pol_ent_beta,
                discrim_ent_beta=args.discrim_ent_beta)
        elif args.rl_type == 'ppo_clip':
            result_dict = gail.train(
                agent_traj,
                expert_traj,
                pol,
                vf,
                discrim,
                optim_vf,