def test_learning(self): pol_net = PolNet(self.env.observation_space, self.env.action_space, h1=32, h2=32) pol = GaussianPol(self.env.observation_space, self.env.action_space, pol_net) vf_net = VNet(self.env.observation_space) vf = DeterministicSVfunc(self.env.observation_space, vf_net) discrim_net = DiscrimNet(self.env.observation_space, self.env.action_space, h1=32, h2=32) discrim = DeterministicSAVfunc(self.env.observation_space, self.env.action_space, discrim_net) sampler = EpiSampler(self.env, pol, num_parallel=1) optim_vf = torch.optim.Adam(vf_net.parameters(), 3e-4) optim_discrim = torch.optim.Adam(discrim_net.parameters(), 3e-4) with open(os.path.join('data/expert_epis', 'Pendulum-v0_2epis.pkl'), 'rb') as f: expert_epis = pickle.load(f) expert_traj = Traj() expert_traj.add_epis(expert_epis) expert_traj.register_epis() epis = sampler.sample(pol, max_steps=32) agent_traj = Traj() agent_traj.add_epis(epis) agent_traj = ef.compute_pseudo_rews(agent_traj, discrim) agent_traj = ef.compute_vs(agent_traj, vf) agent_traj = ef.compute_rets(agent_traj, 0.99) agent_traj = ef.compute_advs(agent_traj, 0.99, 0.95) agent_traj = ef.centerize_advs(agent_traj) agent_traj = ef.compute_h_masks(agent_traj) agent_traj.register_epis() result_dict = gail.train(agent_traj, expert_traj, pol, vf, discrim, optim_vf, optim_discrim, rl_type='trpo', epoch=1, batch_size=32, discrim_batch_size=32, discrim_step=1, pol_ent_beta=1e-3, discrim_ent_beta=1e-5) del sampler
agent_traj.register_epis() if args.data_parallel: pol.dp_run = True vf.dp_run = True discrim.dp_run = True if args.rl_type == 'trpo': result_dict = gail.train( agent_traj, expert_traj, pol, vf, discrim, optim_vf, optim_discrim, rl_type=args.rl_type, epoch=args.epoch_per_iter, batch_size=args.batch_size if not args.rnn else args.rnn_batch_size, discrim_batch_size=args.discrim_batch_size, discrim_step=args.discrim_step, pol_ent_beta=args.pol_ent_beta, discrim_ent_beta=args.discrim_ent_beta) elif args.rl_type == 'ppo_clip': result_dict = gail.train( agent_traj, expert_traj, pol, vf, discrim, optim_vf,