y=list(y.queue), z=list(z.queue), besties=list(besties.queue), names=list(names.queue), iters=list(iters.queue), metric=metric, path=self.path2, n_gen=n_gen - 1, self=self) if __name__ == '__main__': createDummies = False normalize = False name = 'madelon' var = 'Class' d = data.Data(name, var, [], []) d2, target, copy, copy2, copy3, copy4, dummiesLst, ratio, chi2, anova2, originLst =\ d.ready(deleteCols=True, dropna=True, thresholdDrop=70, createDummies=True, normalize=False) pso = PSO(d2, d, ['lr'], target, originLst, name) pop = 5 gen = 5 w = 0.5 c1 = 0.5 c2 = 0.5 g1, g2, g3, g4, g5 = pso.init(pop, gen, w, c1, c2, copy2, dummiesLst, createDummies, normalize, 'accuracy')
import machineLearning.config as cfg from machineLearning import data, genetic, differential, swarm, hill, tabu, simulated, vns, iterated if __name__ == '__main__': d = data.Data(name=cfg.general['dataset'], target=cfg.general['target'], dropColsList=cfg.general['dropcol'], dropClassList=cfg.general['dropclass']) d2, target, copy, copy2, copy3, copy4, dummiesLst, ratio, chi2, anova, origin =\ d.ready(deleteCols=cfg.general['deletecol'], dropna=cfg.general['dropna'], thresholdDrop=cfg.general['thresholddrop'], createDummies=cfg.general['createdummies'], normalize=cfg.general['normalize']) methods = cfg.general['method'] name = cfg.general['dataset'] createDummies = cfg.general['createdummies'] normalize = cfg.general['normalize'] metric = cfg.general['metric'] if cfg.general['heuristic'] == 'genetic': heuristic = genetic.Genetic(d2, d, methods, target, origin, name) g1, g2, g3, g4, g5 = heuristic.init(n_pop=cfg.genetic['pop'], n_gen=cfg.genetic['gen'], n_mut=cfg.genetic['mut'], data=copy2, dummiesList=d.dummiesList, createDummies=createDummies, normalize=normalize, metric=metric) elif cfg.general['heuristic'] == 'differential': heuristic = differential.Differential(d2, d, methods, target, origin, name)