def test_axiom_connecive_rescoping(self): a = Symbol.Predicate('A', ['x']) b = Symbol.Predicate('B', ['y']) universal = Quantifier.Universal(['x'], a) existential = Quantifier.Existential(['y'], b) conjunction = universal & existential disjunction = universal | existential # Ensure we handle single quantifier case self.assertEqual(repr((universal & b).rescope()), '∀(x)[(A(x) & B(y))]') self.assertEqual(repr((existential & a).rescope()), '∃(y)[(B(y) & A(x))]') self.assertEqual(repr((universal | b).rescope()), '∀(x)[(A(x) | B(y))]') self.assertEqual(repr((existential | a).rescope()), '∃(y)[(B(y) | A(x))]') # Ensure we catch error condition where lookahead is needed self.assertRaises(ValueError, (existential | universal).rescope) # Ensure that we can promote Universals when a conjunction lives above us top = a & disjunction self.assertEqual(repr(disjunction.rescope(top)), '∀(x)[∃(y)[(A(x) | B(y))]]') # Ensure that we can promote Existentials when a conjunction lives above us top = a | conjunction self.assertEqual(repr(conjunction.rescope(top)), '∃(y)[∀(x)[(B(y) & A(x))]]')
def test_axiom_to_pcnf(self): a = Symbol.Predicate('A', ['x']) b = Symbol.Predicate('B', ['y']) c = Symbol.Predicate('C', ['z']) # Simple test of disjunction over conjunction axi_one = Axiom.Axiom(Quantifier.Universal(['x', 'y', 'z'], a | b & c)) axi_one = axi_one.to_pcnf() self.assertEqual('∀(z,y,x)[((A(z) | B(y)) & (A(z) | C(x)))]', repr(axi_one)) # Simple sanity check, it's already FF-PCNF axi_two = Axiom.Axiom( Quantifier.Universal(['x', 'y', 'z'], (a | b) & c)) axi_two = axi_two.to_pcnf() self.assertEqual('∀(z,y,x)[(C(x) & (A(z) | B(y)))]', repr(axi_two)) # Sanity check we remove functions c = Symbol.Predicate('C', ['z', Symbol.Function('F', ['z'])]) axi_three = Axiom.Axiom( Quantifier.Universal(['x', 'y', 'z'], a | b & c)) axi_three = axi_three.to_pcnf() self.assertEqual( '∀(z,y,x,w)[((A(z) | C(x,w)) & (A(z) | F(x,w)) & (A(z) | B(y)))]', repr(axi_three))
def test_cnf_negation(self): ''' Ensure we can get into conjunctive normal form ''' alpha = Symbol.Predicate('A', ['x']) beta = Symbol.Predicate('B', ['y']) delta = Symbol.Predicate('D', ['z']) s = ~(Quantifier.Universal(['x', 'y', 'z'], (~(alpha | beta) & delta))) self.assertEqual(repr(s.push_complete()), "∃(x,y,z)[(A(x) | B(y) | ~D(z))]") s = ~(Quantifier.Universal(['x', 'y', 'z'], ~((alpha | beta) & delta))) self.assertEqual(repr(s.push_complete()), "∃(x,y,z)[((A(x) | B(y)) & D(z))]") s = ~((~alpha | ~beta) & ~delta) self.assertEqual(repr(s.push_complete()), "((A(x) & B(y)) | D(z))") ## Test to make sure the recursino into nested stuff actually work s = (~~~~~~~~~alpha).push_complete() self.assertEqual(repr(s), '~A(x)') s = (~~~~~~~~alpha).push_complete() self.assertEqual(repr(s), 'A(x)')
def test_predicate_form(self): ''' Ensure that predicates take the correct repr form ''' alpha = Symbol.Predicate('A', ['x']) self.assertEqual(repr(alpha), 'A(x)') beta = Symbol.Predicate('B', ['x', 'y']) self.assertEqual(repr(beta), 'B(x,y)')
def test_conjunction_form(self): ''' Ensure that the & operator works as intended ''' alpha = Symbol.Predicate('A', ['x']) beta = Symbol.Predicate('B', ['x', 'y']) delta = Symbol.Predicate('D', ['z']) self.assertEqual(repr(alpha & beta), '(A(x) & B(x,y))') self.assertEqual(repr(alpha & beta & delta), '(A(x) & B(x,y) & D(z))')
def test_connective_to_onf(self): alpha = Symbol.Predicate('A', ['x']) beta = Symbol.Predicate('B', ['y']) delta = Symbol.Predicate('D', ['z']) one = (alpha & beta) | (delta & alpha) two = (beta & alpha) | (delta) self.assertEqual(repr(one.to_onf()), '(((D(z) & A(x)) | A(x)) & ((D(z) & A(x)) | B(y)))') self.assertEqual(repr(two.to_onf()), '((D(z) | B(y)) & (D(z) | A(x)))')
def test_axiom_function_replacement(self): f = Symbol.Function('f', ['x']) t = Symbol.Function('t', ['y']) a = Symbol.Predicate('A', [f]) b = Symbol.Predicate('B', [f, t]) axi = Axiom.Axiom(Quantifier.Universal(['x'], a | a & a)) self.assertEqual(repr(axi), '∀(x)[(A(f(x)) | (A(f(x)) & A(f(x))))]') axi = Axiom.Axiom(Quantifier.Universal(['x', 'y'], b)) self.assertEqual( repr(axi.substitute_functions()), '∀(x,y)[∀(t1)[(∀(f1)[(B(f1,t1) & f(x,f1))] & t(y,t1))]]')
def test_cnf_quantifier_simplfy(self): alpha = Symbol.Predicate('A', ['x']) uni_one = Quantifier.Universal(['x'], alpha) mixer = uni_one | alpha uni_two = Quantifier.Universal(['y'], mixer) self.assertEqual(repr(uni_two), "∀(y)[(∀(x)[A(x)] | A(x))]") self.assertEqual(repr(uni_two.simplify()), "∀(y,x)[(A(x) | A(x))]")
def test_axiom_variable_standardize(self): a = Symbol.Predicate('A', ['x']) b = Symbol.Predicate('B', ['y', 'x']) c = Symbol.Predicate('C', ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i']) axi = Axiom.Axiom(Quantifier.Universal(['x'], a | a & a)) self.assertEqual(repr(axi.standardize_variables()), '∀(z)[(A(z) | (A(z) & A(z)))]') axi = Axiom.Axiom(Quantifier.Universal(['x', 'y'], b)) self.assertEqual(repr(axi.standardize_variables()), '∀(z,y)[B(y,z)]') axi = Axiom.Axiom( Quantifier.Existential( ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'], c)) self.assertEqual(repr(axi.standardize_variables()), '∃(z,y,x,w,v,u,t,s,r)[C(z,y,x,w,v,u,t,s,r)]')
def test_quantifiers(self): alpha = Symbol.Predicate('A', ['x']) beta = Symbol.Predicate('B', ['y']) delta = Symbol.Predicate('D', ['z']) uni = Quantifier.Universal(['x', 'y', 'z'], alpha | beta | delta) exi = Quantifier.Existential(['x', 'y', 'z'], alpha & beta & delta) self.assertEqual(repr(uni), "∀(x,y,z)[(A(x) | B(y) | D(z))]") self.assertEqual(repr(exi), "∃(x,y,z)[(A(x) & B(y) & D(z))]") self.assertEqual(repr(~uni), "~∀(x,y,z)[(A(x) | B(y) | D(z))]") self.assertEqual(repr(~exi), "~∃(x,y,z)[(A(x) & B(y) & D(z))]") self.assertEqual(repr((~uni).push()), "∃(x,y,z)[~(A(x) | B(y) | D(z))]") self.assertEqual(repr((~exi).push()), "∀(x,y,z)[~(A(x) & B(y) & D(z))]")
def test_axiom_quantifier_coalesence(self): a = Symbol.Predicate('A', ['x']) b = Symbol.Predicate('B', ['y']) universal = Quantifier.Universal(['x'], a) universal_two = Quantifier.Universal(['y'], b) existential = Quantifier.Existential(['y'], b) existential_two = Quantifier.Existential(['x'], a) # Coalescence over conjunction should merge Universals conjunction = universal & universal_two & existential & existential_two self.assertEqual(repr(conjunction.coalesce()), '(∃(y)[B(y)] & ∃(x)[A(x)] & ∀(x)[(B(x) & A(x))])') # Coalescence over disjunction should merge Existentials disjunction = universal | universal_two | existential | existential_two self.assertEqual(repr(disjunction.coalesce()), '(∀(x)[A(x)] | ∀(y)[B(y)] | ∃(y)[(A(y) | B(y))])')
def test_mixed_form(self): ''' Ensure that the & operator works as intended Note that the '&' operator has a higher precedence in python. ''' alpha = Symbol.Predicate('A', ['x']) beta = Symbol.Predicate('B', ['x', 'y']) delta = Symbol.Predicate('D', ['z']) self.assertEqual(repr((alpha & beta) | delta), '((A(x) & B(x,y)) | D(z))') self.assertEqual(repr(alpha & (beta | delta)), '(A(x) & (B(x,y) | D(z)))') self.assertEqual(repr((alpha & beta) | (alpha & delta)), '((A(x) & B(x,y)) | (A(x) & D(z)))') self.assertEqual(repr((alpha | beta) & (alpha | delta)), '((A(x) | B(x,y)) & (A(x) | D(z)))')
def test_distribution(self): ''' Ensure that distribution over conjunctions work ''' alpha = Symbol.Predicate('A', ['x']) beta = Symbol.Predicate('B', ['y']) delta = Symbol.Predicate('D', ['z']) s = delta | (alpha & beta) ret = s.distribute(s.terms[0], s.terms[1]) self.assertEqual(repr(ret), '((D(z) | A(x)) & (D(z) | B(y)))') s = (alpha | beta) & delta ret = s.distribute(s.terms[0], s.terms[1]) self.assertEqual(repr(ret), '((D(z) & A(x)) | (D(z) & B(y)))') s = (alpha | beta) & (beta | delta) ret = s.distribute(s.terms[0], s.terms[1]) self.assertEqual(repr(ret), '(((A(x) | B(y)) & B(y)) | ((A(x) | B(y)) & D(z)))')
def test_negation(self): ''' Ensure we can get into conjunctive normal form ''' alpha = Symbol.Predicate('A', ['x']) beta = Symbol.Predicate('B', ['y']) delta = Symbol.Predicate('D', ['z']) s = alpha | beta self.assertEqual(repr(~s), "~(A(x) | B(y))") s = alpha & beta self.assertEqual(repr(~s), "~(A(x) & B(y))") s = alpha & beta self.assertEqual(repr((~s).push()), "(~A(x) | ~B(y))") s = alpha | beta self.assertEqual(repr((~s).push()), "(~A(x) & ~B(y))") s = (alpha | beta) & delta self.assertEqual(repr((~s).push()), "(~(A(x) | B(y)) | ~D(z))")
def test_onf_detection(self): alpha = Symbol.Predicate('A', ['x']) beta = Symbol.Predicate('B', ['y']) delta = Symbol.Predicate('D', ['z']) uni = Quantifier.Universal(['x', 'y', 'z'], alpha | beta | delta) exi = Quantifier.Existential(['x', 'y', 'z'], alpha & beta | delta) self.assertEqual(alpha.is_onf(), True) self.assertEqual((alpha | beta).is_onf(), True) self.assertEqual((alpha & beta).is_onf(), True) self.assertEqual((alpha | (beta & delta)).is_onf(), False) self.assertEqual((alpha & (beta | delta)).is_onf(), True) self.assertEqual((~(alpha | beta)).is_onf(), False) self.assertEqual((~(alpha & beta)).is_onf(), False) self.assertEqual(uni.is_onf(), True) self.assertEqual(exi.is_onf(), False) # Note that is_onf() is not a recursive call, it's a top level feature # If will actually if you need an ONF axiom then create a Logical.Axiom and to_onf() self.assertEqual((alpha & (alpha | (beta & delta)) & delta).is_onf(), True)
def test_cnf_quantifier_scoping(self): alpha = Symbol.Predicate('A', ['x']) beta = Symbol.Predicate('B', ['y']) delta = Symbol.Predicate('D', ['z']) uni_one = Quantifier.Universal(['x', 'y', 'z'], alpha | beta | delta) exi_one = Quantifier.Existential(['x', 'y', 'z'], alpha & beta | delta) term = exi_one | beta term_two = exi_one | beta | uni_one self.assertEqual( repr(Quantifier.Universal(['x', 'y', 'z'], uni_one).simplify()), "∀(x,y,z)[(A(x) | B(y) | D(z))]") self.assertEqual( repr(Quantifier.Universal(['x', 'y', 'z'], term_two).simplify()), "∀(x,y,z)[(∃(x,y,z)[((A(x) & B(y)) | D(z))] | B(y) | (A(x) | B(y) | D(z)))]" ) self.assertEqual( repr( Quantifier.Universal(['x', 'y', 'z'], term_two).simplify().rescope()), "∀(x,y,z)[∃(x,y,z)[(B(y) | (A(x) | B(y) | D(z)) | ((A(x) & B(y)) | D(z)))]]" )
def p_function(p): """ function : LPAREN NONLOGICAL parameter RPAREN """ p[0] = Symbol.Function(p[2], p[3])
def p_predicate(p): """ predicate : LPAREN NONLOGICAL parameter RPAREN """ p[0] = Symbol.Predicate(p[2], p[3])