예제 #1
0
def process_online(processor, infile, outfile, **kwargs):
    """Process a file or audio stream with the given Processor.

    Parameters
    ----------
    processor : :class:`Processor` instance
        Processor to be processed.
    infile : str or file handle, optional
        Input file (handle). If none is given, the stream present at the
        system's audio inpup is used. Additional keyword arguments can be used
        to influence the frame size and hop size.
    outfile : str or file handle
        Output file (handle).
    kwargs : dict, optional
        Keyword arguments passed to :class:`.audio.signal.Stream` if
        `in_stream` is 'None'.

    Notes
    -----
    Right now there is no way to determine if a processor is
    online-capable or not. Thus, calling any processor with this
    function may not produce the results expected.
    """
    from madmom.audio.signal import Stream, FramedSignal
    # set default values
    kwargs['sample_rate'] = kwargs.get('sample_rate', 44100)
    kwargs['num_channels'] = kwargs.get('num_channels', 1)
    # if no iput file is given, create a Stream with the given arguments
    if infile is None:
        # open a stream and start if not running already
        stream = Stream(**kwargs)
        if not stream.is_running():
            stream.start()
    # use the input file
    else:
        # set parameters for opening the file
        frame_size = kwargs.get('frame_size', 2048)
        hop_size = kwargs.get('hop_size', 441)
        fps = kwargs.get('fps')
        num_channels = kwargs.get('num_channels')
        # FIXME: overwrite the frame size with the maximum value of all used
        #        processors. This is needed if multiple frame sizes are used
        import warnings
        warnings.warn('make sure that the `frame_size` (%d) is equal to the '
                      'maximum value used by any `FramedSignalProcessor`.' %
                      frame_size)
        # Note: origin must be 'online' and num_frames 'None' to behave exactly
        #       the same as with live input
        stream = FramedSignal(infile,
                              frame_size=frame_size, hop_size=hop_size,
                              fps=fps, origin='online', num_frames=None,
                              num_channels=num_channels)
    # set arguments for online processing
    # Note: pass only certain arguments, because these will be passed to the
    #       processors at every time step (kwargs contains file handles etc.)
    process_args = {'reset': False}  # do not reset stateful processors
    # process everything frame-by-frame
    for frame in stream:
        _process((processor, frame, outfile, process_args))
예제 #2
0
    def __init__(self, audiofilename, midifilename, instrument, instruments,
                 context, audio_options):
        super().__init__()
        self.audiofilename = audiofilename
        self.midifilename = midifilename
        self.instrument = instrument
        self.instruments = instruments
        self.instrument_number_onehot = torch.zeros(1, context['frame_size'],
                                                    len(self.instruments))
        self.instrument_number_onehot[0, :,
                                      self.instruments[self.instrument]] = 1.
        self.audio_options = deepcopy(audio_options)

        spectrogram, y_frames, y_velocity = get_xy_from_file(
            self.audiofilename, self.midifilename, self.audio_options)

        self.spectrogram = FramedSignal(
            spectrogram,
            frame_size=context['frame_size'],
            hop_size=context['hop_size'],
            origin=context['origin'],
        )
        self.y_frames = FramedSignal(
            y_frames,
            frame_size=context['frame_size'],
            hop_size=context['hop_size'],
            origin=context['origin'],
        )
        self.y_velocity = FramedSignal(
            y_velocity,
            frame_size=context['frame_size'],
            hop_size=context['hop_size'],
            origin=context['origin'],
        )

        self.fixed_noise = FramedSignal(
            # the noise should be strictly positive ...
            np.abs(np.random.normal(0, 1, (len(spectrogram), 7))),
            frame_size=context['frame_size'],
            hop_size=context['hop_size'],
            origin=context['origin'],
        )

        if (len(self.spectrogram) != len(self.y_frames)
                or len(self.spectrogram) != len(self.y_velocity)):
            raise RuntimeError('x and y do not have the same length.')
예제 #3
0
def preprocess_sig(sig, frame_size):
    frames = FramedSignal(sig, frame_size = frame_size, fps = 100)
    stft = ShortTimeFourierTransform(frames)
    filt = FilteredSpectrogram(stft,
                               filterbank = MelFilterbank,
                               num_bands = 80,
                               fmin = 27.5, fmax = 16000,
                               norm_filters = True,
                               unique_filters = False)
    log_filt = LogarithmicSpectrogram(filt,
                                      log = np.log,
                                      add = np.spacing(1))
    return log_filt
def get_spectrogram(path,
                    sample_rate=None,
                    fps=None,
                    window=np.hanning,
                    fft_sizes=[1024],
                    filtered=True,
                    filterbank=LogarithmicFilterbank,
                    num_bands=12,
                    fmin=30,
                    fmax=17000):
    ''' 
        path: single file path
        filtered: generate FilteredSpectrogram or normal one
        
        return numpy array shaped (Frequencies, Timeframes, Channels)
        (log-spaced (Filtered)Spectrogram from madmom)
    '''
    spectros = []
    max_fft_size = np.max(fft_sizes)
    # sample_rate=None takes original sample_rate
    # only take 30s snippets to align data
    signal = Signal(path, sample_rate=sample_rate, start=0, stop=30)
    frames = FramedSignal(signal, fps=fps)
    channel_num = 0
    for fft_size in fft_sizes:
        stft = ShortTimeFourierTransform(frames,
                                         window=window,
                                         fft_size=fft_size,
                                         circular_shift=True)
        spectro = LogarithmicSpectrogram(stft)
        if filtered:
            filtered_spectro = FilteredSpectrogram(spectro,
                                                   filterbank=filterbank,
                                                   num_bands=num_bands,
                                                   fmin=fmin,
                                                   fmax=fmax)
            spectros.append(filtered_spectro)
        else:
            spectros.append(spectro)

    # bring all spectros to the same shape, concat them and return them
    num_frequencies = max([spectro.shape[1] for spectro in spectros])
    num_channels = len(spectros)
    num_timestamps = spectros[0].shape[0]

    final_spectro = np.zeros([num_frequencies, num_timestamps, num_channels])
    for channel, spectro in enumerate(spectros):
        final_spectro[:spectro.shape[1], :, channel] = spectro.T
    return final_spectro
예제 #5
0
 def test_process_lstm(self):
     # load uni-directional RNN models
     self.processor = RNNBeatProcessor(online=True, origin='online')
     # process the whole sequence at once
     result = self.processor(sample_file)
     self.assertTrue(np.allclose(result, sample_lstm_act, atol=1e-5))
     # result must be the same if processed a second time
     result_1 = self.processor(sample_file)
     self.assertTrue(np.allclose(result, result_1))
     # result must be the same if processed frame-by-frame
     frames = FramedSignal(sample_file, origin='online')
     self.processor = RNNBeatProcessor(online=True, num_frames=1,
                                       origin='future')
     result_2 = np.hstack([self.processor(f, reset=False) for f in frames])
     self.assertTrue(np.allclose(result, result_2))
     # result must be different without resetting
     result_3 = np.hstack([self.processor(f, reset=False) for f in frames])
     self.assertFalse(np.allclose(result, result_3))
예제 #6
0
def preprocess_sig(sig, frame_size):
    frames = FramedSignal(sig, frame_size=frame_size, fps=100)
    stft = ShortTimeFourierTransform(frames)
    filt = FilteredSpectrogram(stft, num_bands=6)
    spec = np.log10(5 * filt + 1)
    # Calculate difference spectrogram with ratio 0.25
    diff_frames = _diff_frames(0.25,
                               frame_size=frame_size,
                               hop_size=441,
                               window=np.hanning)
    init = np.empty((diff_frames, spec.shape[1]))
    init[:] = np.inf
    spec = np.insert(spec, 0, init, axis=0)
    diff_spec = spec[diff_frames:] - spec[:-diff_frames]
    np.maximum(diff_spec, 0, out=diff_spec)
    diff_spec[np.isinf(diff_spec)] = 0
    diff_spec = np.hstack((spec[diff_frames:], diff_spec))
    return diff_spec
예제 #7
0
    def __init__(self, audiofilename, midifilename, start_end=None):
        self.metadata = dict(
            audiofilename=audiofilename,
            midifilename=midifilename
        )
        x, y = get_xy_from_file(audiofilename, midifilename)
        if start_end is not None:
            start, end = start_end
            x = x[start:end]
            y = y[start:end]

        self.x = FramedSignal(
            x,
            frame_size=5,
            hop_size=1,
            origin='center'
        )
        self.y = y
        _, self.w, self.h = self.x.shape
예제 #8
0
def get_spectrogram(path,
                    filtered=True,
                    window=np.hanning,
                    fft_size=1024,
                    sample_rate=None):
    ''' 
        path: single file path
        filtered: generate FilteredSpectrogram or normal one
        
        return numpy array shaped (Frequencies, Timeframes, Channels)
        (log-spaced (Filtered)Spectrogram from madmom)
    '''
    # sample_rate=None takes original sample_rate
    signal = Signal(path, sample_rate=sample_rate)
    frames = FramedSignal(signal)
    stft = ShortTimeFourierTransform(frames, window=window, fft_size=fft_size)
    spectro = LogarithmicSpectrogram(stft)
    if filtered:
        return FilteredSpectrogram(spectro)
    else:
        return spectro
예제 #9
0
파일: ofos.py 프로젝트: wwpww/ICASSP19
    def __init__(self,
                 audio_filename,
                 midi_filename,
                 input_context,
                 target_maxfilter,
                 audio_options,
                 start_end=None,
                 offset_suppression=None):
        self.metadata = dict(audio_filename=audio_filename,
                             midi_filename=midi_filename)
        self.audio_options = deepcopy(audio_options)

        x, y_onsets, y_frames, y_offsets = get_xy_from_file_subsampled(
            self.metadata['audio_filename'], self.metadata['midi_filename'],
            self.audio_options, start_end)

        self.y_onsets = widen(y_onsets, target_maxfilter['y_onsets'])
        self.y_frames = widen(y_frames, target_maxfilter['y_frames'])

        if offset_suppression is not None:
            # this gets passed the widened *onsets* already
            y_offsets = suppress_offets(y_onsets, y_offsets)

        # widen *after* suppression
        self.y_offsets = widen(y_offsets, target_maxfilter['y_offsets'])

        self.x = FramedSignal(
            x,
            frame_size=input_context['frame_size'],
            hop_size=input_context['hop_size'],
            origin=input_context['origin'],
        )
        if (len(self.x) != len(self.y_onsets)
                or len(self.x) != len(self.y_frames)
                or len(self.x) != len(self.y_offsets)):
            raise RuntimeError('x and y do not have the same length.')
예제 #10
0
def pre_process_cwt(onsets_images_dir, non_onsets_images_dir, audio_files, ann_files):
    # onsets_images_dir = join('dataset_transformed', 'train')# , 'onsets')
    # non_onsets_images_dir = join('dataset_transformed', 'train')# , 'non-onsets')
    onsets_images_dir = 'dataset_transformed'
    non_onsets_images_dir = 'dataset_transformed'

    dataset_dir = 'dataset'
    audio_files = list_audio_files(dataset_dir)
    ann_files = list_annotation_files(dataset_dir)
    frame_size = 1024
    sample_rate = 44100
    t = frame_size / sample_rate
    # t = 0.09287981859410431 # seconds for frame_size = 4096

    time = np.arange(frame_size, dtype=np.float16)
    scales = np.arange(1,81) # scaleogram with 80 rows

    print(f'There are {str(len(audio_files))} audio files and {str(len(ann_files))} annotation files')

    i = 0
    for audio_file in audio_files:
        file_name = basename(audio_file)
        print(f'Pre-processing file {str(i+1)}/{str(len(audio_files))}: {file_name}')

        # Read audio file
        sig = Signal(audio_file, sample_rate, num_channels = 1)

        # Split audio signal into frames of same size
        frames = FramedSignal(sig, frame_size, hop_size = frame_size)
        print(f'There are {str(len(frames))} frames')

        # Read onset annotations for current audio file
        onset_file = ann_files[i]
        onsets = np.loadtxt(onset_file)
        print(f'Onsets read from {onset_file}')
        number_of_onsets = len(onsets)
        print(f'There are {str(number_of_onsets)} onsets')

        # Check if we already generated the correct amount of frames for that file before
        matching_files = glob.glob('dataset_transformed/' + '*'+ file_name + '*')
        if len(matching_files) > 0:
            if len(frames) == len(matching_files):
                print(f'Skipping file {str(i)}/{str(len(audio_files))}: {file_name}')
                i += 1
                continue

        start = 0
        end = t
        f = 0
        onsets_found_this_file = 0
        for frame in frames:
            # Plot frame
            # plt.plot(frame)
            # plt.show()

            # Check if contains onset
            start = f * t
            end = start + t
            f += 1
            hasOnset = False
            for onset in onsets:
                if start <= onset and end >= onset:
                    hasOnset = True
                    onsets_found_this_file += 1

            if hasOnset:
                print(f'There is an onset within the range: {str(start)} to {str(end)} ms')
            else:
                print(f'There are no onsets within the range: {str(start)} to {str(end)} ms')

            # Apply CWT
            cwt = scg.CWT(time, frame, scales, wavelet='cmor1.5-1.0')
            # print(cwt.coefs.shape)

            # Get scaleogram
            ax = scg.cws(cwt, yaxis = 'frequency', wavelet = 'cmor1.5-1.0', cbar = None, coi = False)

            # ['cgau1 :\tComplex Gaussian wavelets', 'cgau2 :\tComplex Gaussian wavelets', 
            # 'cgau3 :\tComplex Gaussian wavelets', 'cgau4 :\tComplex Gaussian wavelets', 
            # 'cgau5 :\tComplex Gaussian wavelets', 'cgau6 :\tComplex Gaussian wavelets', 
            # 'cgau7 :\tComplex Gaussian wavelets', 'cgau8 :\tComplex Gaussian wavelets', 
            # 'cmor1.5-1.0 :\tComplex Morlet wavelets', 'fbsp1-1.5-1.0 :\tFrequency B-Spline wavelets',
            #  'gaus1 :\tGaussian', 'gaus2 :\tGaussian', 'gaus3 :\tGaussian', 'gaus4 :\tGaussian', 
            #  'gaus5 :\tGaussian', 'gaus6 :\tGaussian', 'gaus7 :\tGaussian', 'gaus8 :\tGaussian', 
            #  'mexh :\tMexican hat wavelet', 'morl :\tMorlet wavelet', 'shan1.5-1.0 :\tShannon wavelets']

            # Remove axis from image
            plt.subplots_adjust(bottom = 0, top = 1, left = 0, right = 1)
            # plt.show()

            # Get image from matplot and process it
            fig = plt.gcf()
            plot_img_np = get_img_from_fig(fig)
            image = Image.fromarray(plot_img_np).convert('RGB').resize((15,80)) # TODO try PIL.Image.LANCZOS

            # Save image
            label = '1' if hasOnset == True else '0'
            image.save(join(onsets_images_dir, f'{label}-{file_name}-F{str(f)}.png'))

            plt.close()

        if number_of_onsets != onsets_found_this_file:
            print(f'It was supposed to have {str(number_of_onsets)} onsets. Found {str(onsets_found_this_file)} instead. Exiting...')
            exit()

        i += 1
예제 #11
0
def get_cwt_dataset(split_file):
    audio_files = list_audio_files('dataset')
    ann_files = list_annotation_files('dataset')

    split = np.loadtxt(split_file, dtype = str)

    frame_size = 1024
    sample_rate = 44100
    t = 0.01
    time = np.arange(frame_size, dtype=np.float16)
    scales = np.arange(1,81) # scaleogram with 80 rows

    i = 0
    train_features, train_labels = [], [] # spectograms
    validation_features, validation_labels = [], [] # spectograms
    for audio_file in audio_files:
        file_name = basename(audio_file)
        print(f'Pre-processing file {str(i+1)}/{str(len(audio_files))}: {file_name}')

        # Read audio file
        sig = Signal(audio_file, sample_rate, num_channels = 1)

        frames = FramedSignal(sig, frame_size, hop_size = frame_size/2)

        # Read onset annotations for current audio file
        onset_file = ann_files[i]
        onsets = np.loadtxt(onset_file)
        print(f'Onsets read from {onset_file}')
        number_of_onsets = len(onsets)
        print(f'There are {str(number_of_onsets)} onsets')

        start = 0
        end = t
        f = 0

        for frame in frames:
            cwt = scg.CWT(time, frame, scales, wavelet='cmor1.5-1.0')
            # ax = scg.cws(cwt, yaxis = 'frequency', wavelet = 'cmor1.5-1.0', cbar = None, coi = False)
            # plt.subplots_adjust(bottom = 0, top = 1, left = 0, right = 1)
            # fig = plt.gcf()
            # plot_img_np = get_img_from_fig(fig)
            rgb_frame = Image.fromarray(cwt.coefs.astype(np.uint8)).convert('RGB').resize((15,80), Image.LANCZOS)
            rgb_frame = np.asarray(rgb_frame)
            plt.close()

            # Check if contains onset
            start = f * t
            end = start + t
            f += 1
            label = 0
            for onset in onsets:
                if start <= onset and end >= onset:
                    label = 1

            if audio_file in split:
                validation_features.append(rgb_frame)
                validation_labels.append(label)
            else:
                train_features.append(rgb_frame)
                train_labels.append(label)

        i += 1
        if i == 10: break

    # Post process
    train_features = np.array(train_features)
    validation_features = np.array(validation_features)
    train_features = train_features.astype('float32') / 255.
    validation_features = validation_features.astype('float32') / 255.

    train_labels = np.array(train_labels, dtype=int)
    validation_labels = np.array(validation_labels, dtype=int)

    return train_features, train_labels, validation_features, validation_labels
예제 #12
0
def get_ffts_dataset(split_file):
    audio_files = list_audio_files('dataset')
    ann_files = list_annotation_files('dataset')

    split = np.loadtxt(split_file, dtype = str)

    frame_sizes = [2048, 1024, 4096]
    sample_rate = 44100
    t = 0.01

    i = 0
    train_features, train_labels = [], [] # spectograms
    validation_features, validation_labels = [], [] # spectograms
    for audio_file in audio_files:
        file_name = basename(audio_file)
        print(f'Pre-processing file {str(i+1)}/{str(len(audio_files))}: {file_name}')

        # Read audio file
        sig = Signal(audio_file, sample_rate, num_channels = 1)

        all_spectograms = []
        for frame_size in frame_sizes:
            frames = FramedSignal(sig, frame_size, fps = 100, hop_size = 441)
            stft = ShortTimeFourierTransform(frames)
            filt = FilteredSpectrogram(stft, filterbank = MelFilterbank, num_bands = 80, fmin = 27.5, fmax = 16000, norm_filters = True, unique_filters = False)
            log_filt = LogarithmicSpectrogram(filt, log = np.log, add = np.spacing(1))
            all_spectograms.append(log_filt.T.astype(np.uint8))

        # Stack all in different axis
        final_spectogram = np.dstack(all_spectograms)

        # Read onset annotations for current audio file
        onset_file = ann_files[i]
        onsets = np.loadtxt(onset_file)
        print(f'Onsets read from {onset_file}')
        number_of_onsets = len(onsets)
        print(f'There are {str(number_of_onsets)} onsets')

        start = 0
        end = t + 0.14
        f = 0
        for a in range(7, final_spectogram.shape[1]-7):
            final_frame = final_spectogram[:,a-7:a+8] # +8, but numpy does not include the 8th element

            # Check if contains onset
            start = f * t
            end = start + (t * 15)
            f += 1
            label = 0

            onset_frame_start = start + (t * 5)
            onset_frame_end = onset_frame_start + (t * 5)

            # if f == 20:
            # exit()

            for onset in onsets:
                # if start <= onset and end >= onset:
                if onset_frame_start <= onset and onset_frame_end >= onset:
                    label = 1

            # if label == 1:
            # print(f'There is an onset within the range: {str(onset_frame_start)} to {str(onset_frame_end)} ms')
            # else:
            # print(f'There are no onsets within the range: {str(onset_frame_start)} to {str(onset_frame_end)} ms')

            if audio_file in split:
                validation_features.append(final_frame)
                validation_labels.append(label)
            else:
                train_features.append(final_frame)
                train_labels.append(label)

        i += 1

    # Post process
    train_features = np.array(train_features)
    validation_features = np.array(validation_features)
    train_features = train_features.astype('float32') / 255.
    validation_features = validation_features.astype('float32') / 255.

    train_labels = np.array(train_labels, dtype=int)
    validation_labels = np.array(validation_labels, dtype=int)

    return train_features, train_labels, validation_features, validation_labels
예제 #13
0
def pre_process_fft(onsets_images_dir, non_onsets_images_dir, audio_files, ann_files):
    frame_sizes = [2048, 1024, 4096]
    sample_rate = 44100
    t = 0.01

    i = 0
    for audio_file in audio_files:
        file_name = basename(audio_file)
        print(f'Pre-processing file {str(i+1)}/{str(len(audio_files))}: {file_name}')

        # Read audio file
        sig = Signal(audio_file, sample_rate, num_channels = 1)

        all_spectograms = []
        for frame_size in frame_sizes:
            frames = FramedSignal(sig, frame_size, fps = 100, hop_size = 441)
            stft = ShortTimeFourierTransform(frames)
            filt = FilteredSpectrogram(stft, filterbank = MelFilterbank, num_bands = 80, fmin = 27.5, fmax = 16000, norm_filters = True, unique_filters = False)
            log_filt = LogarithmicSpectrogram(filt, log = np.log, add = np.spacing(1))
            all_spectograms.append(log_filt.T.astype(np.uint8))

        # Stack all in different axis
        final_spectogram = np.dstack(all_spectograms)
        # image = Image.fromarray((final_spectogram))
        # image.save(join(onsets_images_dir, f'zzzz.png'))

        # Read onset annotations for current audio file
        onset_file = ann_files[i]
        onsets = np.loadtxt(onset_file)
        print(f'Onsets read from {onset_file}')
        number_of_onsets = len(onsets)
        print(f'There are {str(number_of_onsets)} onsets')

        # Split audio signal into frames of same size
        frames = FramedSignal(sig, frame_size, fps = 100, hop_size = 441)
        print(f'There are {str(len(frames))} frames')

        # Check if we already generated the correct amount of frames for that file before
        matching_files = glob.glob('dataset_transformed/' + '*'+ file_name + '*')
        if len(matching_files) > 0:
            if len(frames) == len(matching_files):
                print(f'Skipping file {str(i)}/{str(len(audio_files))}: {file_name}')
                i += 1
                continue

        start = 0
        end = t + 0.14
        f = 0
        onsets_found_this_file = 0

        for a in range(final_spectogram.shape[1]-15):
            final_frame = final_spectogram[:,a:a+15]

            # Check if contains onset
            start = f * t
            end = start + t + 0.14
            f += 1
            hasOnset = False
            for onset in onsets:
                if start <= onset and end >= onset:
                    hasOnset = True
                    onsets_found_this_file += 1

            # if hasOnset:
            #     print(f'There is an onset within the range: {str(start)} to {str(end)} ms')
            # else:
            #     print(f'There are no onsets within the range: {str(start)} to {str(end)} ms')

            image = Image.fromarray(final_frame)

            # Save image
            if hasOnset:
                image.save(join(onsets_images_dir, f'1-{file_name}-F{str(f)}.png'))
            else:
                image.save(join(non_onsets_images_dir, f'0-{file_name}-F{str(f)}.png'))

        i += 1
예제 #14
0
def getPCPHistogram(filename, fs=8192, show=False):

    res = {}

    sig = Signal(filename, num_channels=1)
    fsig = FramedSignal(sig, frame_size=fs)
    stft = ShortTimeFourierTransform(fsig)
    spec = Spectrogram(stft)
    chroma = PitchClassProfile(spec, num_classes=12)

    hist = [0 for i in range(12)]
    hist_f = [0 for i in range(12)]
    for f in range(len(chroma)):
        wf = chroma[f]
        hist = map(sum, zip(hist, wf))
        f = flatness(wf)
        hist_f = map(sum, zip(hist_f, [w * f for w in wf]))

    s = sum(hist)
    hist = map(lambda x: x / s, hist)
    C_hist = [hist[i - 9] for i in range(12)]
    res['standard'] = C_hist

    s_f = sum(hist_f)
    hist_f = map(lambda x: x / s_f, hist_f)
    C_hist_f = [hist_f[i - 9] for i in range(12)]
    res['standard_f'] = C_hist_f

    hpss = HarmonicPercussiveSourceSeparation()
    h, _ = hpss.process(spec)
    chroma = PitchClassProfile(h, num_classes=12)

    hist = [0 for i in range(12)]
    hist_f = [0 for i in range(12)]
    for f in range(len(chroma)):
        wf = chroma[f]
        hist = map(sum, zip(hist, wf))
        f = flatness(wf)
        hist_f = map(sum, zip(hist_f, [w * f for w in wf]))

    s = sum(hist)
    hist = map(lambda x: x / s, hist)
    C_hist = [hist[i - 9] for i in range(12)]
    res['hpss'] = C_hist

    s_f = sum(hist_f)
    hist_f = map(lambda x: x / s_f, hist_f)
    C_hist_f = [hist_f[i - 9] for i in range(12)]
    res['hpss_f'] = C_hist_f

    dcp = DeepChromaProcessor()
    deepchroma = dcp(filename)

    hist = [0 for i in range(12)]
    hist_f = [0 for i in range(12)]
    for f in range(len(deepchroma)):
        wf = deepchroma[f]
        hist = map(sum, zip(hist, wf))
        f = flatness(wf)
        hist_f = map(sum, zip(hist_f, [w * f for w in wf]))

    s = sum(hist)
    hist = map(lambda x: x / s, hist)
    res['deep'] = hist

    s_f = sum(hist_f)
    hist_f = map(lambda x: x / s_f, hist_f)
    res['deep_f'] = hist_f

    if show:
        plt.subplot(131)
        plt.barh(range(12), res['standard'])
        plt.subplot(132)
        plt.barh(range(12), res['hpss'])
        plt.subplot(133)
        plt.barh(range(12), res['deep'])
        plt.show()
    return res