def test_set_key_valid(): df = mg.read_csv_metadata(path_for_A) mg.set_key(df, 'ID') assert_equal(mg.get_key(df), 'ID') mg.del_property(df, 'key') assert_equal(len(mg.get_all_properties(df)), 0)
def test_del_property_valid(): df = mg.read_csv_metadata(path_for_A) mg.set_key(df, 'ID') assert_equal(mg.get_key(df), 'ID') mg.del_property(df, 'key') assert_equal(mg.is_property_present_for_df(df, 'key'), False) mg.del_catalog()
def setup(self): p = mg.get_install_path() path_for_A = os.sep.join( [p, 'datasets', 'example_datasets', 'bikes', 'A.csv']) path_for_B = os.sep.join( [p, 'datasets', 'example_datasets', 'bikes', 'B.csv']) l_key = 'id' r_key = 'id' self.A = mg.read_csv_metadata(path_for_A) mg.set_key(self.A, l_key) self.B = mg.read_csv_metadata(path_for_B) mg.set_key(self.B, r_key) l_block_attr_1 = 'city_posted' r_block_attr_1 = 'city_posted' l_output_attrs = [ 'bike_name', 'city_posted', 'km_driven', 'price', 'color', 'model_year' ] r_output_attrs = [ 'bike_name', 'city_posted', 'km_driven', 'price', 'color', 'model_year' ] self.ab = mg.AttrEquivalenceBlocker() self.C = self.ab.block_tables(self.A, self.B, l_block_attr_1, r_block_attr_1, l_output_attrs, r_output_attrs, verbose=False) self.l_block_attr = 'model_year' self.r_block_attr = 'model_year'
def test_get_catalog_valid(): df = mg.read_csv_metadata(path_for_A) mg.set_key(df, 'ID') assert_equal(len(mg.get_all_properties(df)), 1) c = mg.get_catalog() assert_equal(len(c), 1) mg.del_catalog()
def setup(self): path_for_A = os.sep.join([datasets_path, 'electronics', 'A.csv']) path_for_B = os.sep.join([datasets_path, 'electronics', 'B.csv']) self.l_block_attr = 'Brand' self.r_block_attr = 'Brand' self.l_output_attrs = ['Brand', 'Amazon_Price'] self.r_output_attrs = ['Brand', 'Price'] self.A = mg.read_csv_metadata(path_for_A) mg.set_key(self.A, 'ID') self.B = mg.read_csv_metadata(path_for_B) mg.set_key(self.B, 'ID')
def setup(self): path_for_A = os.sep.join([datasets_path, 'restaurants', 'A.csv']) path_for_B = os.sep.join([datasets_path, 'restaurants', 'B.csv']) self.l_block_attr = 'PHONENUMBER' self.r_block_attr = 'PHONENUMBER' self.l_output_attrs = ['NAME', 'PHONENUMBER', 'ADDRESS'] self.r_output_attrs = ['NAME', 'PHONENUMBER', 'ADDRESS'] self.A = mg.read_csv_metadata(path_for_A) mg.set_key(self.A, 'ID') self.B = mg.read_csv_metadata(path_for_B) mg.set_key(self.B, 'ID')
def setup(self): path_for_A = os.sep.join([datasets_path, 'anime', 'A.csv']) path_for_B = os.sep.join([datasets_path, 'anime', 'B.csv']) self.l_block_attr = 'Year' self.r_block_attr = 'Year' self.l_output_attrs = ['Title', 'Year', 'Episodes'] self.r_output_attrs = ['Title', 'Year', 'Episodes'] self.A = mg.read_csv_metadata(path_for_A) mg.set_key(self.A, 'ID') self.B = mg.read_csv_metadata(path_for_B) mg.set_key(self.B, 'ID')
def setup(self): path_for_A = os.sep.join([datasets_path, 'citations', 'A.csv']) path_for_B = os.sep.join([datasets_path, 'citations', 'B.csv']) self.l_block_attr = 'year' self.r_block_attr = 'year' self.l_output_attrs = ['title', 'author', 'year', 'ENTRYTYPE'] self.r_output_attrs = ['title', 'author', 'year', 'ENTRYTYPE'] self.A = mg.read_csv_metadata(path_for_A) mg.set_key(self.A, 'ID') self.B = mg.read_csv_metadata(path_for_B) mg.set_key(self.B, 'ID')
def setup(self): path_for_A = os.sep.join([datasets_path, 'anime', 'A.csv']) path_for_B = os.sep.join([datasets_path, 'anime', 'B.csv']) A = mg.read_csv_metadata(path_for_A) mg.set_key(A, 'ID') B = mg.read_csv_metadata(path_for_B) mg.set_key(B, 'ID') self.C = ab.block_tables(A, B, 'Year', 'Year', ['Title', 'Year', 'Episodes'], ['Title', 'Year', 'Episodes']) self.l_block_attr = 'Episodes' self.r_block_attr = 'Episodes'
def setup(self): path_for_A = os.sep.join([datasets_path, 'books', 'A.csv']) path_for_B = os.sep.join([datasets_path, 'books', 'B.csv']) A = mg.read_csv_metadata(path_for_A) mg.set_key(A, 'ID') B = mg.read_csv_metadata(path_for_B) mg.set_key(B, 'ID') self.C = ab.block_tables(A, B, 'Author', 'Author', ['Title', 'Author', 'ISBN13', 'Publisher'], ['Title', 'Author', 'ISBN13', 'Publisher']) self.l_block_attr = 'ISBN13' self.r_block_attr = 'ISBN13'
def setup(self): path_for_A = os.sep.join([datasets_path, 'books', 'A.csv']) path_for_B = os.sep.join([datasets_path, 'books', 'B.csv']) self.l_block_attr = 'Author' self.r_block_attr = 'Author' self.l_output_attrs = ['Title', 'Author', 'ISBN13', 'Publisher', 'Publication_Date'] self.r_output_attrs = ['Title', 'Author', 'ISBN13', 'Publisher', 'Publication_Date'] self.A = mg.read_csv_metadata(path_for_A) mg.set_key(self.A, 'ID') self.B = mg.read_csv_metadata(path_for_B) mg.set_key(self.B, 'ID')
def setup(self): path_for_A = os.sep.join([datasets_path, 'books', 'A.csv']) path_for_B = os.sep.join([datasets_path, 'books', 'B.csv']) self.l_block_attr = 'Author' self.r_block_attr = 'Author' self.l_output_attrs = [ 'Title', 'Author', 'ISBN13', 'Publisher', 'Publication_Date' ] self.r_output_attrs = [ 'Title', 'Author', 'ISBN13', 'Publisher', 'Publication_Date' ] self.A = mg.read_csv_metadata(path_for_A) mg.set_key(self.A, 'ID') self.B = mg.read_csv_metadata(path_for_B) mg.set_key(self.B, 'ID')
def setup(self): p = mg.get_install_path() path_for_A = os.sep.join([p, 'datasets', 'example_datasets', 'bikes', 'A.csv']) path_for_B = os.sep.join([p, 'datasets', 'example_datasets', 'bikes', 'B.csv']) l_key = 'id' r_key = 'id' self.A = mg.read_csv_metadata(path_for_A) mg.set_key(self.A, l_key) self.B = mg.read_csv_metadata(path_for_B) mg.set_key(self.B, r_key) self.l_block_attr = 'city_posted' self.r_block_attr = 'city_posted' self.l_output_attrs = ['bike_name', 'city_posted', 'km_driven', 'price', 'color', 'model_year'] self.r_output_attrs = ['bike_name', 'city_posted', 'km_driven', 'price', 'color', 'model_year'] self.ab = mg.AttrEquivalenceBlocker()
def setUp(self): self.A = mg.read_csv_metadata(path_for_A) mg.set_key(self.A, l_key) self.B = mg.read_csv_metadata(path_for_B) mg.set_key(self.B, r_key) self.ab = mg.AttrEquivalenceBlocker()
def test_set_key_invalid_mv(): df = mg.read_csv_metadata(path_for_A_dup) status = mg.set_key(df, 'ID') assert_equal(status, False)
# # mg.set_key(A, 'ID') # # # mg.set_metadata(A, 'key', 'ID') # # print mg.get_metadata(A, 'key') # # print mg.get_key(A) # # print mg.is_dfinfo_present(B) # # mg.set_metadata(B, 'key', 'ID') # # print mg.get_metadata(B, 'key') # mg.set_key(B, 'ID') # # print mg.is_dfinfo_present(B) # print mg.is_property_present_for_df(B, 'ltable') # # print mg.get_catalog_len() # # mg.del_property(B, 'key') # print mg.is_property_present_for_df(B, 'ID') # # # mg.del_all_properties(A) # print mg.get_catalog_len() A = mg.read_csv_metadata(path_for_A) print A print mg._catalog mg.set_key(A, 'ID') print 'xyx'