예제 #1
0
def _create_example(pathuni):
    """Bulk of dataset processing. Converts str path to serialized tf.Example."""
    path, uni, binary_fp = pathuni
    final = {}

    # zoom out
    path = svg_utils.zoom_out(path)
    # make clockwise
    path = svg_utils.canonicalize(path)

    # render path for training
    final['rendered'] = svg_utils.per_step_render(path, absolute=True)

    # make path relative
    path = svg_utils.make_relative(path)
    # convert to vector
    vector = svg_utils.path_to_vector(path, categorical=True)
    # make simple vector
    vector = np.array(vector)
    vector = np.concatenate(
        [np.take(vector, [0, 4, 5, 9], axis=-1), vector[..., -6:]], axis=-1)

    # count some stats
    final['seq_len'] = np.shape(vector)[0]
    final['class'] = int(svg_utils.map_uni_to_alphanum(uni))
    final['binary_fp'] = str(binary_fp)

    # append eos
    vector = svg_utils.append_eos(vector.tolist(), True, 10)

    # pad path to 51 (with eos)
    final['sequence'] = np.concatenate(
        (vector, np.zeros(((50 - final['seq_len']), 10))), 0)

    # make pure list:
    final['rendered'] = np.reshape(final['rendered'][..., 0],
                                   [64 * 64]).astype(np.float32).tolist()
    final['sequence'] = np.reshape(final['sequence'],
                                   [51 * 10]).astype(np.float32).tolist()
    final['class'] = np.reshape(final['class'],
                                [1]).astype(np.int64).tolist()
    final['seq_len'] = np.reshape(final['seq_len'],
                                  [1]).astype(np.int64).tolist()

    return generator_utils.to_example(final).SerializeToString()
예제 #2
0
def _create_example(pathuni):
    """Bulk of dataset processing. Converts str path to serialized tf.Example."""
    path, uni, binary_fp = pathuni
    final = {}

    # print(path)
    #f = open('/home1/wangyz/magenta-master/data-anypair/all_paths_' + str(uni) +'.txt','a')
    #f.write(str(path) + '\n')
    # f.close()

    f = open('/home1/wangyz/magenta-master/data-anypair/all_paths_' +
             str(uni) + '.txt', 'r')
    lines = f.read().split('\n')
    idx = random.randint(0, len(lines)-2)
    print(uni, binary_fp)
    #source_path = list(lines[idx])
    # print(ast.literal_eval(lines[idx]))
    source_path = ast.literal_eval(lines[idx])
    # input()
    # zoom out
    path = svg_utils.zoom_out(path)
    source_path = svg_utils.zoom_out(source_path)
    # make clockwise
    path = svg_utils.canonicalize(path)
    source_path = svg_utils.canonicalize(source_path)

    # render path for training
    final['rendered'] = svg_utils.per_step_render(path, absolute=True)
    final['source_rendered'] = svg_utils.per_step_render(
        source_path, absolute=True)
    # make path relative
    path = svg_utils.make_relative(path)
    source_path = svg_utils.make_relative(source_path)
    # convert to vector
    vector = svg_utils.path_to_vector(path, categorical=True)
    source_vector = svg_utils.path_to_vector(source_path, categorical=True)
    # make simple vector
    vector = np.array(vector)
    source_vector = np.array(source_vector)
    vector = np.concatenate(
        [np.take(vector, [0, 4, 5, 9], axis=-1), vector[..., -6:]], axis=-1)
    source_vector = np.concatenate(
        [np.take(source_vector, [0, 4, 5, 9], axis=-1), source_vector[..., -6:]], axis=-1)
    # count some stats
    # print(np.shape(vector))
    # print(np.shape(source_vector))
    # input()
    final['seq_len'] = np.shape(vector)[0]
    final['source_seq_len'] = np.shape(source_vector)[0]
    final['class'] = int(svg_utils.map_uni_to_alphanum(uni))
    final['binary_fp'] = str(binary_fp)

    # append eos
    vector = svg_utils.append_eos(vector.tolist(), True, 10)
    source_vector = svg_utils.append_eos(source_vector.tolist(), True, 10)
    # pad path to 51 (with eos)
    final['sequence'] = np.concatenate(
        (vector, np.zeros(((50 - final['seq_len']), 10))), 0)
    final['source_sequence'] = np.concatenate(
        (source_vector, np.zeros(((50 - final['source_seq_len']), 10))), 0)
    # make pure list:
    final['rendered'] = np.reshape(final['rendered'][..., 0],
                                   [64*64]).astype(np.float32).tolist()
    final['source_rendered'] = np.reshape(final['source_rendered'][..., 0],
                                          [64*64]).astype(np.float32).tolist()
    final['sequence'] = np.reshape(final['sequence'],
                                   [51*10]).astype(np.float32).tolist()
    final['source_sequence'] = np.reshape(final['source_sequence'],
                                          [51*10]).astype(np.float32).tolist()
    final['class'] = np.reshape(final['class'],
                                [1]).astype(np.int64).tolist()
    final['seq_len'] = np.reshape(final['seq_len'],
                                  [1]).astype(np.int64).tolist()
    final['source_seq_len'] = np.reshape(final['source_seq_len'],
                                         [1]).astype(np.int64).tolist()
    return generator_utils.to_example(final).SerializeToString()