예제 #1
0
def get_pipeline(config, steps_per_quarter, min_steps, max_steps, eval_ratio):
    """Returns the Pipeline instance which creates the RNN dataset.

  Args:
    config: An EventSequenceRnnConfig.
    steps_per_quarter: How many steps per quarter to use when quantizing.
    min_steps: Minimum number of steps for an extracted sequence.
    max_steps: Maximum number of steps for an extracted sequence.
    eval_ratio: Fraction of input to set aside for evaluation set.

  Returns:
    A pipeline.Pipeline instance.
  """
    quantizer = pipelines_common.Quantizer(steps_per_quarter=steps_per_quarter)
    # Transpose up to a major third in either direction.
    # Because our current dataset is Bach chorales, transposing more than a major
    # third in either direction probably doesn't makes sense (e.g., because it is
    # likely to exceed normal singing range).
    transposition_range = range(-4, 5)
    transposition_pipeline_train = sequences_lib.TranspositionPipeline(
        transposition_range, name='TranspositionPipelineTrain')
    transposition_pipeline_eval = sequences_lib.TranspositionPipeline(
        transposition_range, name='TranspositionPipelineEval')
    poly_extractor_train = PolyphonicSequenceExtractor(
        min_steps=min_steps, max_steps=max_steps, name='PolyExtractorTrain')
    poly_extractor_eval = PolyphonicSequenceExtractor(min_steps=min_steps,
                                                      max_steps=max_steps,
                                                      name='PolyExtractorEval')
    encoder_pipeline_train = encoder_decoder.EncoderPipeline(
        polyphony_lib.PolyphonicSequence,
        config.encoder_decoder,
        name='EncoderPipelineTrain')
    encoder_pipeline_eval = encoder_decoder.EncoderPipeline(
        polyphony_lib.PolyphonicSequence,
        config.encoder_decoder,
        name='EncoderPipelineEval')
    partitioner = pipelines_common.RandomPartition(
        music_pb2.NoteSequence, ['eval_poly_tracks', 'training_poly_tracks'],
        [eval_ratio])

    dag = {
        quantizer: dag_pipeline.DagInput(music_pb2.NoteSequence),
        partitioner: quantizer,
        transposition_pipeline_train: partitioner['training_poly_tracks'],
        transposition_pipeline_eval: partitioner['eval_poly_tracks'],
        poly_extractor_train: transposition_pipeline_train,
        poly_extractor_eval: transposition_pipeline_eval,
        encoder_pipeline_train: poly_extractor_train,
        encoder_pipeline_eval: poly_extractor_eval,
        dag_pipeline.DagOutput('training_poly_tracks'): encoder_pipeline_train,
        dag_pipeline.DagOutput('eval_poly_tracks'): encoder_pipeline_eval
    }
    return dag_pipeline.DAGPipeline(dag)
def get_pipeline(config, eval_ratio):
  """Returns the Pipeline instance which creates the RNN dataset.

  Args:
    config: A DrumsRnnConfig object.
    eval_ratio: Fraction of input to set aside for evaluation set.

  Returns:
    A pipeline.Pipeline instance.
  """
  partitioner = pipelines_common.RandomPartition(
      music_pb2.NoteSequence,
      ['eval_drum_tracks', 'training_drum_tracks'],
      [eval_ratio])
  dag = {partitioner: dag_pipeline.DagInput(music_pb2.NoteSequence)}

  for mode in ['eval', 'training']:
    time_change_splitter = pipelines_common.TimeChangeSplitter(
        name='TimeChangeSplitter_' + mode)
    quantizer = pipelines_common.Quantizer(
        steps_per_quarter=config.steps_per_quarter, name='Quantizer_' + mode)
    drums_extractor = drum_pipelines.DrumsExtractor(
        min_bars=7, max_steps=512, gap_bars=1.0, name='DrumsExtractor_' + mode)
    encoder_pipeline = encoder_decoder.EncoderPipeline(
        magenta.music.DrumTrack, config.encoder_decoder,
        name='EncoderPipeline_' + mode)

    dag[time_change_splitter] = partitioner[mode + '_drum_tracks']
    dag[quantizer] = time_change_splitter
    dag[drums_extractor] = quantizer
    dag[encoder_pipeline] = drums_extractor
    dag[dag_pipeline.DagOutput(mode + '_drum_tracks')] = encoder_pipeline

  return dag_pipeline.DAGPipeline(dag)
def get_pipeline(config, min_events, max_events, eval_ratio):
  """Returns the Pipeline instance which creates the RNN dataset.

  Args:
    config: A PerformanceRnnConfig.
    min_events: Minimum number of events for an extracted sequence.
    max_events: Maximum number of events for an extracted sequence.
    eval_ratio: Fraction of input to set aside for evaluation set.

  Returns:
    A pipeline.Pipeline instance.
  """
  # Stretch by -5%, -2.5%, 0%, 2.5%, and 5%.
  stretch_factors = [0.95, 0.975, 1.0, 1.025, 1.05]

  # Transpose no more than a major third.
  transposition_range = range(-3, 4)

  partitioner = pipelines_common.RandomPartition(
      music_pb2.NoteSequence,
      ['eval_performances', 'training_performances'],
      [eval_ratio])
  dag = {partitioner: dag_pipeline.DagInput(music_pb2.NoteSequence)}

  for mode in ['eval', 'training']:
    sustain_pipeline = note_sequence_pipelines.SustainPipeline(
        name='SustainPipeline_' + mode)
    stretch_pipeline = note_sequence_pipelines.StretchPipeline(
        stretch_factors, name='StretchPipeline_' + mode)
    splitter = note_sequence_pipelines.Splitter(
        hop_size_seconds=30.0, name='Splitter_' + mode)
    quantizer = note_sequence_pipelines.Quantizer(
        steps_per_second=config.steps_per_second, name='Quantizer_' + mode)
    transposition_pipeline = note_sequence_pipelines.TranspositionPipeline(
        transposition_range, name='TranspositionPipeline_' + mode)
    perf_extractor = PerformanceExtractor(
        min_events=min_events, max_events=max_events,
        num_velocity_bins=config.num_velocity_bins,
        name='PerformanceExtractor_' + mode)
    encoder_pipeline = encoder_decoder.EncoderPipeline(
        performance_lib.Performance, config.encoder_decoder,
        name='EncoderPipeline_' + mode)

    dag[sustain_pipeline] = partitioner[mode + '_performances']
    dag[stretch_pipeline] = sustain_pipeline
    dag[splitter] = stretch_pipeline
    dag[quantizer] = splitter
    dag[transposition_pipeline] = quantizer
    dag[perf_extractor] = transposition_pipeline
    dag[encoder_pipeline] = perf_extractor
    dag[dag_pipeline.DagOutput(mode + '_performances')] = encoder_pipeline

  return dag_pipeline.DAGPipeline(dag)
예제 #4
0
def get_pipeline(config, steps_per_quarter, min_steps, max_steps, eval_ratio):
  """Returns the Pipeline instance which creates the RNN dataset.

  Args:
    config: An EventSequenceRnnConfig.
    steps_per_quarter: How many steps per quarter to use when quantizing.
    min_steps: Minimum number of steps for an extracted sequence.
    max_steps: Maximum number of steps for an extracted sequence.
    eval_ratio: Fraction of input to set aside for evaluation set.

  Returns:
    A pipeline.Pipeline instance.
  """
  quantizer = pipelines_common.Quantizer(steps_per_quarter=steps_per_quarter)
  poly_extractor_train = PolyphonicSequenceExtractor(
      min_steps=min_steps, max_steps=max_steps, name='PolyExtractorTrain')
  poly_extractor_eval = PolyphonicSequenceExtractor(
      min_steps=min_steps, max_steps=max_steps, name='PolyExtractorEval')
  encoder_pipeline_train = encoder_decoder.EncoderPipeline(
      polyphony_lib.PolyphonicSequence, config.encoder_decoder,
      name='EncoderPipelineTrain')
  encoder_pipeline_eval = encoder_decoder.EncoderPipeline(
      polyphony_lib.PolyphonicSequence, config.encoder_decoder,
      name='EncoderPipelineEval')
  partitioner = pipelines_common.RandomPartition(
      music_pb2.NoteSequence,
      ['eval_poly_tracks', 'training_poly_tracks'],
      [eval_ratio])

  dag = {quantizer: dag_pipeline.DagInput(music_pb2.NoteSequence),
         partitioner: quantizer,
         poly_extractor_train: partitioner['training_poly_tracks'],
         poly_extractor_eval: partitioner['eval_poly_tracks'],
         encoder_pipeline_train: poly_extractor_train,
         encoder_pipeline_eval: poly_extractor_eval,
         dag_pipeline.DagOutput('training_poly_tracks'): encoder_pipeline_train,
         dag_pipeline.DagOutput('eval_poly_tracks'): encoder_pipeline_eval}
  return dag_pipeline.DAGPipeline(dag)
def get_pipeline(config, eval_ratio):
    """Returns the Pipeline instance which creates the RNN dataset.

  Args:
    config: A DrumsRnnConfig object.
    eval_ratio: Fraction of input to set aside for evaluation set.

  Returns:
    A pipeline.Pipeline instance.
  """
    quantizer = pipelines_common.Quantizer(steps_per_quarter=4)
    drums_extractor_train = drum_pipelines.DrumsExtractor(
        min_bars=7, max_steps=512, gap_bars=1.0, name='DrumsExtractorTrain')
    drums_extractor_eval = drum_pipelines.DrumsExtractor(
        min_bars=7, max_steps=512, gap_bars=1.0, name='DrumsExtractorEval')
    encoder_pipeline_train = encoder_decoder.EncoderPipeline(
        magenta.music.DrumTrack,
        config.encoder_decoder,
        name='EncoderPipelineTrain')
    encoder_pipeline_eval = encoder_decoder.EncoderPipeline(
        magenta.music.DrumTrack,
        config.encoder_decoder,
        name='EncoderPipelineEval')
    partitioner = pipelines_common.RandomPartition(
        music_pb2.NoteSequence, ['eval_drum_tracks', 'training_drum_tracks'],
        [eval_ratio])

    dag = {
        quantizer: dag_pipeline.DagInput(music_pb2.NoteSequence),
        partitioner: quantizer,
        drums_extractor_train: partitioner['training_drum_tracks'],
        drums_extractor_eval: partitioner['eval_drum_tracks'],
        encoder_pipeline_train: drums_extractor_train,
        encoder_pipeline_eval: drums_extractor_eval,
        dag_pipeline.DagOutput('training_drum_tracks'): encoder_pipeline_train,
        dag_pipeline.DagOutput('eval_drum_tracks'): encoder_pipeline_eval
    }
    return dag_pipeline.DAGPipeline(dag)
def get_pipeline(config, min_steps, max_steps, eval_ratio):
    """Returns the Pipeline instance which creates the RNN dataset.

  Args:
    config: An EventSequenceRnnConfig.
    min_steps: Minimum number of steps for an extracted sequence.
    max_steps: Maximum number of steps for an extracted sequence.
    eval_ratio: Fraction of input to set aside for evaluation set.

  Returns:
    A pipeline.Pipeline instance.
  """
    # Transpose up to a major third in either direction.
    # Because our current dataset is Bach chorales, transposing more than a major
    # third in either direction probably doesn't makes sense (e.g., because it is
    # likely to exceed normal singing range).
    transposition_range = range(-4, 5)

    partitioner = pipelines_common.RandomPartition(
        music_pb2.NoteSequence, ['eval_poly_tracks', 'training_poly_tracks'],
        [eval_ratio])
    dag = {partitioner: dag_pipeline.DagInput(music_pb2.NoteSequence)}

    for mode in ['eval', 'training']:
        time_change_splitter = note_sequence_pipelines.TimeChangeSplitter(
            name='TimeChangeSplitter_' + mode)
        quantizer = note_sequence_pipelines.Quantizer(
            steps_per_quarter=config.steps_per_quarter,
            name='Quantizer_' + mode)
        transposition_pipeline = note_sequence_pipelines.TranspositionPipeline(
            transposition_range, name='TranspositionPipeline_' + mode)
        poly_extractor = PolyphonicSequenceExtractor(min_steps=min_steps,
                                                     max_steps=max_steps,
                                                     name='PolyExtractor_' +
                                                     mode)
        encoder_pipeline = encoder_decoder.EncoderPipeline(
            polyphony_lib.PolyphonicSequence,
            config.encoder_decoder,
            name='EncoderPipeline_' + mode)

        dag[time_change_splitter] = partitioner[mode + '_poly_tracks']
        dag[quantizer] = time_change_splitter
        dag[transposition_pipeline] = quantizer
        dag[poly_extractor] = transposition_pipeline
        dag[encoder_pipeline] = poly_extractor
        dag[dag_pipeline.DagOutput(mode + '_poly_tracks')] = encoder_pipeline

    return dag_pipeline.DAGPipeline(dag)