예제 #1
0
def extract_net_parcel_info():
    """
    把每个网络的编号,名字以及所包含的MMP parcel的编号和名字列出来
    """
    from magicbox.io.io import CiftiReader

    # inputs
    net_file = pjoin(work_dir, 'networks.dlabel.nii')

    # outputs
    out_file = pjoin(work_dir, 'net_parcel_info.txt')

    # prepare
    reader = CiftiReader(net_file)
    net_names = reader.map_names()
    lbl_tables = reader.label_tables()

    # calculate & save
    wf = open(out_file, 'w')
    for net_idx, net_name in enumerate(net_names):
        wf.write(f'>>>{net_idx+1}-{net_name}\n')
        lbl_tab = lbl_tables[net_idx]
        for lbl_k, lbl_v in lbl_tab.items():
            if lbl_k == 0:
                continue
            wf.write(f'{lbl_k}-{lbl_v.label[:-4]}\n')
        wf.write('<<<\n')
    wf.close()
예제 #2
0
def make_non_outlier_map(fpath,
                         thr,
                         roi_name,
                         out_file_mask=None,
                         out_file_prob=None):
    """
    将同时在thr%以上的被试中被认定为outlier的顶点判定为跨被试的outlier
    If out_file_mask is not None, save mask map. (.dlabel.nii or .npy)
    If out_file_prob is not None, save prob map. (.dscalar.nii)
    """
    # prepare
    data = np.load(fpath)
    n_subj, n_vtx = data.shape

    atlas1 = Atlas('Cole_visual_LR')
    atlas2 = Atlas('Cole_visual_ROI')
    assert atlas1.maps.shape == (1, LR_count_32k)
    assert atlas2.maps.shape == (1, LR_count_32k)
    roi_idx_map = atlas1.maps[0] == atlas1.roi2label[roi_name]

    if roi_name == 'R_cole_visual':
        prefix = 'R_'
    elif roi_name == 'L_cole_visual':
        prefix = 'L_'
    else:
        raise ValueError("error roi_name:", roi_name)
    mmp_reader = CiftiReader(mmp_map_file)
    mmp_lbl_tab = mmp_reader.label_tables()[0]

    # calculate
    if out_file_mask is not None:
        data_tmp = np.sum(data, axis=0)
        outlier_vec = data_tmp > thr / 100 * n_subj
        print(f'#outliers/total: {np.sum(outlier_vec)}/{n_vtx}')
        mask_npy = np.zeros(LR_count_32k, bool)
        mask_npy[roi_idx_map] = ~outlier_vec
        if out_file_mask.endswith('.npy'):
            np.save(out_file_mask, mask_npy)
        elif out_file_mask.endswith('.dlabel.nii'):
            mask_cii = atlas2.maps.copy()
            mask_cii[0, ~mask_npy] = np.nan
            lbl_tab = nib.cifti2.cifti2.Cifti2LabelTable()
            for roi, lbl in atlas2.roi2label.items():
                if roi.startswith(prefix):
                    lbl_tab[lbl] = mmp_lbl_tab[lbl]
            save2cifti(out_file_mask,
                       mask_cii,
                       mmp_reader.brain_models(),
                       label_tables=[lbl_tab])
        else:
            raise ValueError("Not supported file name:", out_file_mask)

    if out_file_prob is not None:
        data_tmp = np.mean(data, axis=0)
        prob_map = np.ones((1, LR_count_32k), dtype=np.float64) * np.nan
        prob_map[0, roi_idx_map] = data_tmp
        assert out_file_prob.endswith('.dscalar.nii')
        save2cifti(out_file_prob, prob_map, mmp_reader.brain_models())
예제 #3
0
def separate_networks():
    """
    把ColeNetwork的12个网络分到单独的map里。
    每个map的MMP parcel的label保留原来的样子。
    需要注意的是multimodal_glasser的MMP_mpmLR32k.dlabel.nii中,
    ROI label的编号1~180是右脑,181~360是左脑。0对应的是???
    而cortex_parcel_network_assignments.mat中0~359的index是左脑在先
    """
    import numpy as np
    import nibabel as nib
    from scipy.io import loadmat
    from cxy_visual_dev.lib.ColeNet import get_name_label_of_ColeNetwork
    from magicbox.io.io import CiftiReader, save2cifti

    # inputs
    mmp_file = '/nfs/p1/atlases/multimodal_glasser/surface/'\
               'MMP_mpmLR32k.dlabel.nii'
    roi2net_file = pjoin(cole_dir, 'cortex_parcel_network_assignments.mat')

    # outputs
    out_file = pjoin(work_dir, 'networks.dlabel.nii')

    # load
    mmp_reader = CiftiReader(mmp_file)
    mmp_map = mmp_reader.get_data()[0]
    lbl_tab_raw = mmp_reader.label_tables()[0]

    roi2net = loadmat(roi2net_file)['netassignments'][:, 0]
    roi2net = np.r_[roi2net[180:], roi2net[:180]]
    net_labels = np.unique(roi2net)

    # prepare
    data = np.zeros((len(net_labels), len(mmp_map)), dtype=np.uint16)
    map_names = []
    label_tables = []
    net_lbl2name = {}
    for name, lbl in zip(*get_name_label_of_ColeNetwork()):
        net_lbl2name[lbl] = name

    # calculate
    for net_idx, net_lbl in enumerate(net_labels):
        roi_labels = np.where(roi2net == net_lbl)[0] + 1
        lbl_tab = nib.cifti2.cifti2.Cifti2LabelTable()
        lbl_tab[0] = lbl_tab_raw[0]
        for roi_lbl in roi_labels:
            data[net_idx, mmp_map == roi_lbl] = roi_lbl
            lbl_tab[roi_lbl] = lbl_tab_raw[roi_lbl]
        map_names.append(net_lbl2name[net_lbl])
        label_tables.append(lbl_tab)

    # save
    save2cifti(out_file,
               data,
               mmp_reader.brain_models(),
               map_names,
               label_tables=label_tables)
def separate_networks():
    """
    把ColeNetwork的12个网络分到单独的map里。
    每个map的MMP parcel的label保留原来的样子。
    需要注意的是multimodal_glasser的MMP_mpmLR32k.dlabel.nii中,
    ROI label的编号1~180是右脑,181~360是左脑。0对应的是???
    而cortex_parcel_network_assignments.mat中0~359的index是左脑在先
    """
    # outputs
    out_file = pjoin(work_dir, 'networks.dlabel.nii')

    # load
    mmp_reader = CiftiReader(mmp_map_file)
    mmp_map = mmp_reader.get_data()[0]
    lbl_tab_raw = mmp_reader.label_tables()[0]

    roi2net = loadmat(cole_net_assignment_file)['netassignments'][:, 0]
    roi2net = np.r_[roi2net[180:], roi2net[:180]]
    net_labels = np.unique(roi2net)

    # prepare
    data = np.zeros((len(net_labels), len(mmp_map)), dtype=np.uint16)
    map_names = []
    label_tables = []

    # calculate
    for net_idx, net_lbl in enumerate(net_labels):
        roi_labels = np.where(roi2net == net_lbl)[0] + 1
        lbl_tab = nib.cifti2.cifti2.Cifti2LabelTable()
        lbl_tab[0] = lbl_tab_raw[0]
        for roi_lbl in roi_labels:
            data[net_idx, mmp_map == roi_lbl] = roi_lbl
            lbl_tab[roi_lbl] = lbl_tab_raw[roi_lbl]
        map_names.append(cole_label2name[net_lbl])
        label_tables.append(lbl_tab)

    # save
    save2cifti(out_file,
               data,
               mmp_reader.brain_models(),
               map_names,
               label_tables=label_tables)